Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper details the assessment process and evaluation results for the Critical Assessment of Protein Structure Prediction (CASP7) domain prediction category. Domain predictions were assessed using the Normalized Domain Overlap score introduced in CASP6 and the accuracy of prediction of domain break points. The results of the analysis clearly demonstrate that the best methods are able to make consistently reliable predictions when the target has a structural template, although they are less good when the domain break occurs in a region not covered by a template. The conditions of the experiment meant that it was impossible to draw any conclusions about domain prediction for free modeling targets and it was also difficult to draw many distinctions between the best groups. Two thirds of the targets submitted were single domains and hence regarded as easy to predict. Even those targets defined as having multiple domains always had at least one domain with a similar template structure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.21675DOI Listing

Publication Analysis

Top Keywords

domain prediction
12
domain
8
casp7 domain
8
prediction category
8
domain break
8
prediction
5
assessment predictions
4
predictions submitted
4
submitted casp7
4
category paper
4

Similar Publications

Photonic Reservoir Computing (RC) systems leverage the complex propagation and nonlinear interaction of optical waves to perform information processing tasks. These systems employ a combination of optical data encoding (in the field amplitude and/or phase), random scattering, and nonlinear detection to generate nonlinear features that can be processed via a linear readout layer. In this work, we propose a novel scattering-assisted photonic reservoir encoding scheme where the input phase is deliberately wrapped multiple times beyond the natural period of the optical waves [0,2π).

View Article and Find Full Text PDF

Large language models (LLMs) have demonstrated transformative potential for materials discovery in condensed matter systems, but their full utility requires both broader application scenarios and integration with ab initio crystal structure prediction (CSP), density functional theory (DFT) methods and domain knowledge to benefit future inverse material design. Here, we develop an integrated computational framework combining language model-guided materials screening with genetic algorithm (GA) and graph neural network (GNN)-based CSP methods to predict new photovoltaic material. This LLM + CSP + DFT approach successfully identifies a previously overlooked oxide material with unexpected photovoltaic potential.

View Article and Find Full Text PDF

The rotation of the bacterial flagellum is powered by the MotAB stator complex, which converts ion flux into torque. Despite its central role in flagellar function, the evolutionary origin and structural diversity of this system remain poorly understood. Here, we present the first comprehensive phylogenetic and structural characterization of MotAB and its closest non-flagellar homologs.

View Article and Find Full Text PDF

Unrelated pathogens, including viruses and bacteria, use a common short linear motif (SLiM) to interact with cellular kinases of the RSK (p90 S6 ribosomal kinase) family. Such a "DDVF" (D/E-D/E-V-F) SLiM occurs in the leader (L) protein encoded by picornaviruses of the genus , including Theiler's murine encephalomyelitis virus (TMEV), Boone cardiovirus (BCV), and Encephalomyocarditis virus (EMCV). The L-RSK complex is targeted to the nuclear pore, where RSK triggers FG-nucleoporins hyperphosphorylation, thereby causing nucleocytoplasmic trafficking disruption.

View Article and Find Full Text PDF

Prognostic models for radiation-induced complications after radiotherapy in head and neck cancer patients.

Cochrane Database Syst Rev

September 2025

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.

Background: Radiotherapy is the mainstay of treatment for head and neck cancer (HNC) but may induce various side effects on surrounding normal tissues. To reach an optimal balance between tumour control and toxicity prevention, normal tissue complication probability (NTCP) models have been reported to predict the risk of radiation-induced side effects in patients with HNC. However, the quality of study design, conduct, and analysis (i.

View Article and Find Full Text PDF