In vitro nitrosation of insulin A- and B-chains.

Eur J Mass Spectrom (Chichester)

REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal.

Published: September 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The physiological roles of insulin and nitric oxide (NO) have been recently recognized by several studies. A diversity of chemical modifications of insulin is reported both in vivo and in vitro. S-nitrosation, the covalent linkage of NO to cysteine free thiol is recognized as an important post-translational regulation in many proteins. Here we report the in vitro synthesis of an S-nitrosothiol of bovine insulin A- and B-chains. These compounds were characterized by their HPLC chromatographic behavior, monitored by UV visible spectroscopy and electron spray ionization mass spectrometry. The experimental results indicate that each A- and B-chain were S- nitrosated with only one NO group. Stability and solubility of these synthesized derivatives is described for physiological purposes. In this work, nitroso A- and B-chains of insulin were synthesized in vitro in order to better understand the possible interactions between insulin and NO that may be involved in the etiology of insulin resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1255/ejms.835DOI Listing

Publication Analysis

Top Keywords

insulin b-chains
8
insulin
7
vitro
4
vitro nitrosation
4
nitrosation insulin
4
b-chains physiological
4
physiological roles
4
roles insulin
4
insulin nitric
4
nitric oxide
4

Similar Publications

Homocysteine thiolactone is a reactive thiol known for its interaction with various proteins. Nevertheless, there exists a paucity of information concerning the interaction between homocysteine thiolactone and human insulin, particularly regarding the mechanism by which homocysteine facilitates the reduction of disulfide bonds within insulin. In the present study, we have elucidated the binding sites of homocysteine to the cysteine residues (A6-B7 and A20-B19) that are implicated in the formation of intermolecular disulfide bonds in insulin through an in vitro reaction analyzed via LC-ESI MS/MS.

View Article and Find Full Text PDF

Proinsulin has three distinct regions: the well-folded A- and B-chains and the dynamic disordered C-peptide. The highly conserved B-chain is a hotspot for diabetes-associated mutations, including the severe loss-of-function R(B22)Q mutation linked to childhood-onset diabetes. Here, we explore R(B22)'s role in proinsulin stability using AlphaFold-predicted structures and metadynamics simulations to achieve enhanced sampling of the free energy landscape.

View Article and Find Full Text PDF

Insulin is a key life-saving drug for patients with diabetes and is used clinically worldwide. To address the physicochemical challenges of insulin, such as low solubility and aggregation, glycosylated insulins have been chemically synthesized, exhibiting improved stability due to the hydration effect of glycans. In this work, we demonstrated the rapid synthesis of glycosylated insulins (glycoinsulins) using flow-based solid-phase peptide synthesis (SPPS).

View Article and Find Full Text PDF

Genomics and transcriptomics identify quantitative trait loci affecting growth-related traits in silver pomfret (Pampus argenteus).

Comp Biochem Physiol Part D Genomics Proteomics

June 2025

National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by

Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources.

View Article and Find Full Text PDF

Splitting the chains: ultra-basal insulin analog uncovers a redox mechanism of hormone clearance.

Nat Commun

November 2024

Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.

Reporting in , Kjeldsen and colleagues describe a redox mechanism of insulin clearance based on separation of A- and B chains. Exploiting an ultra-long-acting analog protected from classical clearance pathways, the study highlights principles of protein stability in pharmacology.

View Article and Find Full Text PDF