An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation.

Beilstein J Org Chem

College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, PR China.

Published: March 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Pyrazoline derivatives have been found to possess a broad spectrum of biological activities. Among various pyrazoline derivatives, 2-pyrazolines seem to be the most frequently studied. A variety of methods have been reported for the preparation of this class of compound. However, in spite of their potential utility, some of the reported methods suffer from drawbacks such as long reaction times, cumbersome product isolation procedures and environmental concerns. Organic reactions in aqueous media have attracted increasing interest recently because of environmental issues and the understanding of biochemical processes. Ultrasound has increasingly been used in organic synthesis in the last three decades. A large number of organic reactions can be carried out in higher yields, shorter reaction time or milder conditions under ultrasound irradiation.

Results: Preparation of a series of 1,3,5-triaryl-2-pyrazolines through the reaction of chalcones and phenylhydrazine hydrochloride was carried out in 83-96% yield within 1.5-2 h in sodium acetate-acetic acid aqueous solution under ultrasound irradiation.

Conclusion: We have described a practical and convenient procedure for the synthesis of 1,3,5-triaryl-2-pyrazolines in sodium acetate-acetic acid aqueous solution at room temperature under ultrasound irradiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847524PMC
http://dx.doi.org/10.1186/1860-5397-3-13DOI Listing

Publication Analysis

Top Keywords

acid aqueous
12
aqueous solution
12
synthesis 135-triaryl-2-pyrazolines
8
solution ultrasound
8
ultrasound irradiation
8
pyrazoline derivatives
8
organic reactions
8
sodium acetate-acetic
8
acetate-acetic acid
8
ultrasound
5

Similar Publications

Construction of Hollow Structured Covalent Organic Framework with Chiral Internal Catalytic Sites for Asymmetric Hydrogenation.

Small

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.

The functionality of covalent organic frameworks (COFs) is usually highly related to their morphologies. Among various morphologies, the hollow-structured COFs have recently attracted intense attention due to their unique properties. Herein, the synthesis of hollow structured COFs are first reported with the chiral internal sites via combining the chiral templating method with the acid etching approach.

View Article and Find Full Text PDF

Spent liquors of biomass pretreatment provide a source for renewable chemical production. These liquors require treatment before being discharged; otherwise, they negatively impact the environment. Herein, spent liquors from aqueous ammonia pretreatment of poplar wood are characterized for phenolic content via liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF

Alkaline zinc-iron flow batteries (AZIFBs) are one of the promising aqueous redox chemistries for large-scale energy storage due to their intrinsic safety and low cost. However, the energy efficiency (EE) and power density of batteries with low-cost polybenzimidazole (PBI) membranes are still limited due to the relatively poor ionic conductivity of PBI in an alkaline medium. Here, this study proposes a novel chemical approach for regulating the chemical environment of the PBI membrane.

View Article and Find Full Text PDF

Solvation Structure of Np in a Noncomplexing Environment.

Inorg Chem

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.

View Article and Find Full Text PDF