98%
921
2 minutes
20
The transient receptor potential (TRP) superfamily comprises of a group of non-selective cation channels that have been implicated in both receptor and store-operated channel functions. The family of classical TRPs (TRPCs) consists of seven members (TRPC1-7), with TRPC4 possibly playing a role in neuronal signaling. We have examined the distribution pattern of TRPC4 mRNA and protein in the developing and postnatal murine brain by using in situ hybridization, Western blotting, and immunocytochemistry. Expression of TRPC4 mRNA starts at embryonic day 14.5 (E14.5) in the developing septal area and cerebellar anlagen. At E16.5, prominent expression is additionally seen in the hippocampal formation and cortical plate. High densities of cells expressing TRPC4 mRNA occur in the adult olfactory bulb and hippocampus, whereas the cortex and septum display lower densities of cells positive for TRPC4 mRNA. Analysis of the adult hippocampal formation has revealed TRPC4 immunoreactivity in hippocampal areas CA1 to CA3 and in the dentate gyrus. Functions consistent with this spatially restricted pattern of expression remain to be revealed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00441-007-0388-4 | DOI Listing |
Pharmaceuticals (Basel)
October 2024
Department of Physiology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea.
Am J Transl Res
June 2024
Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University Nanning 530000, Guangxi, P. R. China.
Objectives: Endothelial progenitor cells (EPCs) play a crucial role in acquired angiogenesis and endothelial injury repair. Transient receptor potential canonical channel 4 (TRPC4), a key component of store-operated calcium channels, is essential for EPC function. While the role of TRPCs has been clarified in vascular diseases, the relationship between TRPC4 and EPC function, along with the underlying molecular mechanisms, remains unclear and requires further elucidation.
View Article and Find Full Text PDFExp Biol Med (Maywood)
December 2023
Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2022
Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
The TRPC family consists of multiple important cationic channels in mammals that participate in a variety of physiological and pathological processes. Our previous studies have shown that transforming growth factor-β1 (TGF-β1) increases the expression of TRPC6 in podocytes, but the roles of other members of the TRPC family in podocytes require further investigation. In this study, we investigated the effect of TGF-β1 on the expression of the TRPC family and the role of the TRPC family in the changes of the intracellular Ca concentration ([Ca]) in podocytes induced by TGF-β1.
View Article and Find Full Text PDFFront Genet
May 2022
Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.
Regulation of intracellular concentration of calcium levels is crucial for cell signaling, homeostasis, and in the pathology of diseases including cancer. Agonist-induced entry of calcium ions into the non-excitable cells is mediated by store-operated calcium channels (SOCs). This pathway is activated by the release of calcium ions from the endoplasmic reticulum and further regulated by the calcium uptake through mitochondria leading to calcium-dependent inactivation of calcium-release activated calcium channels (CARC).
View Article and Find Full Text PDF