Attention induces synchronization-based response gain in steady-state visual evoked potentials.

Nat Neurosci

Department of Psychology and Institute for Neuroscience, Northwestern University, 2029 Sheridan Road, Evanston, Illinois 60208, USA.

Published: January 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

When attention is voluntarily directed to a spatial location, visual sensitivity increases at that location. What causes this improved sensitivity? Studies of single neuron spike rates in monkeys have provided mixed results in regard to whether attending to a stimulus increases its effective contrast (contrast gain) or multiplicatively boosts stimulus-driven neural responses (response or activity gain). We monitored frequency-tagged steady-state visual evoked potentials (SSVEPs) in humans and found that voluntary sustained attention multiplicatively increased stimulus-driven population electrophysiological activity. Analyses of intertrial phase coherence showed that this attentional response gain was at least partially due to the increased synchronization of SSVEPs to stimulus flicker. These results suggest that attention operates in a complementary manner at different levels; attention seems to increase single-neuron spike rates in a variety of ways, including contrast, response and activity gains, while also inducing a multiplicative boost on neural population activity via enhanced response synchronization.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn1821DOI Listing

Publication Analysis

Top Keywords

response gain
8
steady-state visual
8
visual evoked
8
evoked potentials
8
spike rates
8
response activity
8
attention
5
response
5
attention induces
4
induces synchronization-based
4

Similar Publications

Background: Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disease caused by a gain-of-function mutation in the gene, which regulates inflammasome-mediated interleukin-1β (IL-1β) production. This leads to recurrent episodes of fever, rash, and arthritis, typically beginning in childhood.

Objective: To demonstrate the role of a missense mutation, c.

View Article and Find Full Text PDF

This experiment evaluated the effects of supplementing yeast culture ( ) on in situ ruminal degradability, rumen fermentation and microbiota responses of heifers consuming a forage-based diet. Twelve ruminally-cannulated Angus-influenced heifers were ranked by body weight ( 180 ± 4 kg) and assigned to 4 groups of 3 heifers each. Groups were enrolled in a replicated 3 × 3 Latin square design containing 3 periods of 21 d and 14-d washout intervals.

View Article and Find Full Text PDF

Background And Aim: The global demand for sustainable animal protein sources has led to the exploration of insects as alternative feed ingredients. Among these, black soldier fly (BSF) larvae () have demonstrated significant nutritional and functional potential. This study investigated the effects of microwave-dried BSF larvae meal (MDBSFM) on growth performance, intestinal morphology, humoral immune response, and insulin-like growth factor-1 (IGF-1) messenger RNA (mRNA) expression in broiler chickens.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF

Multi-omic analysis reveals a key BCAT1 role in mTOR activation by B-cell receptor and TLR9.

J Clin Invest

September 2025

Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, United States of America.

B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof.

View Article and Find Full Text PDF