New synthesis of a porous Si/TiO2 photocatalyst: testing its efficiency and stability under visible light irradiation.

Photochem Photobiol Sci

Research Institute of Photocatalysis, Fuzhou University, 523# Gongye Road, Fuzhou, P.R. China.

Published: July 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TiO(2) nanoparticles were directly coupled with porous silicon and this novel composite material shows very strong photocatalytic activity for the degradation of Rhodamine B with high photochemical stability under visible light irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b517744hDOI Listing

Publication Analysis

Top Keywords

stability visible
8
visible light
8
light irradiation
8
synthesis porous
4
porous si/tio2
4
si/tio2 photocatalyst
4
photocatalyst testing
4
testing efficiency
4
efficiency stability
4
irradiation tio2
4

Similar Publications

Starch-based biopolymer films with nitrogen-doped carbon quantum dots for enhanced barrier functions via surface microarchitectures.

Int J Biol Macromol

September 2025

Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:

This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.

View Article and Find Full Text PDF

Discovery of 2-tetrahydroisoquinoline substituted quinazoline derivatives as lysine methyltransferase G9a inhibitors with in vivo antitumor efficacy.

Eur J Med Chem

September 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Innovative Immunotherapy, Central Research Institute,

Overexpression of protein lysine methyltransferase G9a, which catalyzes mono- and di-methylation of histone H3K9 and non-histone proteins, is closely associated with poor prognosis and metastasis of various cancers. Here, we designed and synthesized a series of novel G9a inhibitors bearing 2-tetrahydroisoquinoline substituted quinazoline scaffold. Among them, compound 31 with 2-dioxole fused tetrahydroisoquinoline exhibited the most potent inhibitory effects against G9a with an IC value of 0.

View Article and Find Full Text PDF

Z-scheme Heterojunction on TS-1 Zeolite Boosting Ultrafast Visible-Light-Driven Degradation of Cr(VI) and Tetracycline.

Inorg Chem

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

Photocatalysis has emerged as a promising strategy to address water pollution caused by heavy metals and antibiotics. Zeolites exhibit significant potential in petrochemical catalysis; however, the development of zeolite-based photocatalysts remains a critical challenge for researchers. Herein, a novel Z-scheme heterojunction was designed and fabricated on the titanium-silicon zeolite TS-1 by modifying g-CN via a simple calcination process.

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).

View Article and Find Full Text PDF