Overexpression of transforming growth factor-beta1 in teeth results in detachment of ameloblasts and enamel defects.

Eur J Oral Sci

Functional Genomics Section, Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.

Published: May 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transforming growth factor-beta1 (TGF-beta1) is a key regulator of many cellular processes, including cell adhesion, the immune response and synthesis of extracellular matrix proteins. In the present study, we report the characterization of enamel defects in a transgenic mouse model overexpressing TGF-beta1 in odontoblasts and ameloblasts, its expression being driven by the promoter sequences of the dentin sialophosphoprotein gene. As reported earlier, these mice develop distinct dentin defects similar to those seen in human dentin dysplasia and dentinogenesis imperfecta. A further detailed examination of enamel in these mice revealed that from the early secretory stage, ameloblasts began to detach from dentin to form cyst-like structures. A soft X-ray analysis revealed that this cyst-like structure had a disorganized and partially mineralized matrix with an abnormal mineralization pattern and a globular appearance. In the molars, the enamel was not only pitted and hypoplastic, but enamel rods were completely lost. Thus, altered TGF-beta1 expression in the tooth seems to trigger detachment of ameloblasts and abnormal secretion and deposition of minerals in the cyst-like structures adjoining the dentin. We speculate that the altered expression of TGF-beta1 in teeth impacts the adhesion process of ameloblasts to dentin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0722.2006.00276.xDOI Listing

Publication Analysis

Top Keywords

transforming growth
8
growth factor-beta1
8
detachment ameloblasts
8
enamel defects
8
cyst-like structures
8
dentin
6
ameloblasts
5
enamel
5
overexpression transforming
4
factor-beta1 teeth
4

Similar Publications

Background And Aims: Hepatocellular carcinoma (HCC) has a poor prognosis and limited treatment options. TGF-β is a promising therapeutic target, but its dual role, as both a tumour suppressor and promoter, complicates its clinical application. While its effects on tumour cells are increasingly understood, its impact on the tumour stroma remains unclear.

View Article and Find Full Text PDF

The Role of AMPKα in the Mechanism of Development and Treatment of Heart Failure.

Rev Cardiovasc Med

August 2025

Department of Cardiovascular Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032 Taiyuan, Shanxi, China.

The AMP-activated protein kinase (AMPK) alpha (AMPK) subunit is the catalytic subunit in the AMPK complex and includes both 1 and 2 isoforms. Phosphorylation of upstream kinases at the Thr172 site in the -subunit is critical for AMPK activation. The kinases upstream of AMPK include liver kinase B1 (LKB1), calcium/calmodulin-dependent protein kinase kinase (CaMKK), and transforming growth factor -activated kinase 1 (TAK1).

View Article and Find Full Text PDF

Hypoxia plays a critical role in regulating the progression of non-small cell lung cancer (NSCLC) by modulating the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), important components of TIME, can be regulated by hypoxic conditions. Unfortunately, the molecular mechanisms by which hypoxia regulates TAMs in TIME to affect NSCLC progression has not been fully delineated.

View Article and Find Full Text PDF

Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF