98%
921
2 minutes
20
Factors that mediate p53 tumor suppressor activity remain largely unknown. In this study we describe a systematic approach to identify downstream mediators of tumor suppressor function of p53, consisting of global gene expression profiling, focused short hairpin RNA (shRNA) library creation, and functional selection of genetic elements cooperating with oncogenic Ras in cell transformation. This approach is based on our finding that repression of gene expression is a major event, occurring in response to p53 inactivation during transformation and immortalization of primary cells. Functional analysis of the subset of genes universally down-regulated in the cells that lacked functional p53 revealed BTG2 as a major downstream effector of p53-dependent proliferation arrest of mouse and human fibroblasts transduced with oncogenic Ras. shRNA-mediated knockdown of BTG2 cooperates with oncogenic Ras to transform primary mouse fibroblasts containing wild-type transcriptionally active p53. Repression of BTG2 results in up-regulation of cyclins D1 and E1 and phosphorylation of Rb and, in cooperation with other oncogenic elements, induces neoplastic transformation of primary human fibroblasts. BTG2 expression was found to be significantly reduced in a large proportion of human kidney and breast carcinomas, suggesting that BTG2 is a tumor suppressor that links p53 and Rb pathways in human tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356114 | PMC |
http://dx.doi.org/10.1101/gad.1372606 | DOI Listing |
Virchows Arch
September 2025
Department of Public Health, University Federico II of Naples, Naples, Italy.
The PTEN tumor suppressor regulates the PIK3CA/AKT1 pathway, and its inactivation significantly contributes to tumorigenesis and progression in hormone receptor-positive/HER2-negative (HR + /HER2 -) metastatic breast cancer (MBC). In ~ 5% of these patients, PTEN loss, primarily due to gene deletions, leads to aberrant PI3K signaling and enhanced oncogenic potential. Findings from the CAPItello-291 study further establish PTEN together with PIK3CA and AKT1 as a predictive biomarker for Capivasertib, a pan-AKT inhibitor, in these patients.
View Article and Find Full Text PDFOncogene
September 2025
Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Pancreatic cancer is a highly aggressive malignancy with a dismal prognosis, characterized by a complex tumor microenvironment that promotes immunosuppression and limits the efficacy of immune checkpoint blockade (ICB) therapy. Fibroblast activation protein (FAP) is overexpressed in the tumor stroma and represents a promising target for therapeutic intervention. Here, we developed a novel antibody-drug conjugate (ADC) targeting FAP, and investigated its anti-tumor activity and ability to enhance ICB efficacy in pancreatic cancer.
View Article and Find Full Text PDFUrol Oncol
September 2025
Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:
Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.
Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.
Biochim Biophys Acta Rev Cancer
September 2025
Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China; Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China; National Regional Medical Cente
Pancreatic ductal adenocarcinoma (PDAC) exhibits persistent resistance to immunotherapy, with a 5-year survival rate around 10 %. The CD39-CD73-adenosine axis emerges as a critical mediator of immune evasion in PDAC, generating pathologically elevated adenosine concentrations that systematically suppress anti-tumor immunity. This purinergic pathway operates through sequential ATP hydrolysis by CD39 and CD73 ectonucleotidases, producing adenosine that engages four G-protein-coupled receptors (A1, A2A, A2B, A3) to orchestrate comprehensive immunosuppression.
View Article and Find Full Text PDFElife
September 2025
Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany.
The p53 transcription factor family consists of the three members p53, p63, and p73. Both p63 and p73 exist in different isoforms that are well characterized. Isoforms have also been identified for p53 and it has been proposed that they are responsible for increased cancer metastasis.
View Article and Find Full Text PDF