Regulation of the Drosophila transcription factor, Cubitus interruptus, by two conserved domains.

Dev Biol

Department of Biochemistry, Molecular Biology, and Cell Biology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA.

Published: March 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hedgehog signaling is required for the development of many organisms, including Drosophila. In flies, Hh patterns the embryonic epidermis and larval imaginal discs by regulating the transcription factor, Cubitus interruptus (Ci). To date, three levels of regulation have been identified: proteolytic processing into a repressor, nuclear import, and activation. In this report, we characterize the function of two Ci domains that are conserved in the vertebrate homologues, GLI1, GLI2, and GLI3. One domain includes the first two of five C(2)-H(2) zinc-fingers. While conserved in all members of the GLI/Ci family, the first two fingers do not appear to make significant contacts with the DNA target sequence. Ci protein lacking this region is still able to interact with the cytoplasmic complex and activate transcription in embryos and wing imaginal discs, but it is no longer processed into the repressor form. The second domain, termed NR for "N-terminal Regulatory", binds Suppressor of Fused. Deletion of this region has little effect on embryonic patterning, but compromises cytoplasmic retention of Ci. Analysis of the amino acid sequence of this domain identifies 11 perfectly conserved serines and one tyrosine. We propose that this region may be modified, possibly by phosphorylation, to regulate Ci nuclear import.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2005.12.020DOI Listing

Publication Analysis

Top Keywords

transcription factor
8
factor cubitus
8
cubitus interruptus
8
imaginal discs
8
nuclear import
8
regulation drosophila
4
drosophila transcription
4
conserved
4
interruptus conserved
4
conserved domains
4

Similar Publications

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Warm temperature-induced autophagy mediates selective degradation of TIMING OF CAB EXPRESSION 1 thus promoting plant thermomorphogenesis.

Plant Cell

September 2025

Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.

Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.

View Article and Find Full Text PDF

RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.

View Article and Find Full Text PDF

Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF