98%
921
2 minutes
20
Survival of living cells and organisms is largely based on highly reliable function of their regulatory networks. However, the elements of biological networks, e.g., regulatory genes in genetic networks or neurons in the nervous system, are far from being reliable dynamical elements. How can networks of unreliable elements perform reliably? We here address this question in networks of autonomous noisy elements with fluctuating timing and study the conditions for an overall system behavior being reproducible in the presence of such noise. We find a clear distinction between reliable and unreliable dynamical attractors. In the reliable case, synchrony is sustained in the network, whereas in the unreliable scenario, fluctuating timing of single elements can gradually desynchronize the system, leading to nonreproducible behavior. The likelihood of reliable dynamical attractors strongly depends on the underlying topology of a network. Comparing with the observed architectures of gene regulation networks, we find that those 3-node subgraphs that allow for reliable dynamics are also those that are more abundant in nature, suggesting that specific topologies of regulatory networks may provide a selective advantage in evolution through their resistance against noise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317958 | PMC |
http://dx.doi.org/10.1073/pnas.0509132102 | DOI Listing |
Chem Commun (Camb)
September 2025
Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.
High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.
Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2025
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.
Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.
View Article and Find Full Text PDFACS Catal
August 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.
View Article and Find Full Text PDFAJP Rep
July 2025
Allo Hope Foundation, Tuscaloosa, Alabama.
Objective: The purpose of this study was to investigate mental health and impacts upon daily life in patients with a history of pregnancy alloimmunization, and secondarily to examine the relationship between disease severity and quality of care on these outcomes.
Study Design: This was a survey administered between November 2022 and February 2023 to U.S.