98%
921
2 minutes
20
Titanium platelets with a sand-blasted and acid-etched surface were coated with bovine serum albumin and incubated with a suspension of Porphyromonas gingivalis (ATCC 33277). Four groups with a total of 48 specimens were formed. Laser irradiation of the specimens (n = 12) was performed on a computer-controlled XY translation stage at pulse energy 60 mJ and frequency 10 pps. Twelve specimens were treated with an air powder system. After the respective treatment, human gingival fibroblasts were incubated on the specimens. The proliferation rate was determined by means of fluorescence activity of a redox indicator (Alamar Blue Assay) which is reduced by metabolic activity related to cellular growth. Proliferation was determined up to 72 h. Contaminated and non-treated as well as sterile specimens served as positive and negative controls. Proliferation activity was significantly (Mann-Whitney U-test, P < 0.05) reduced on contaminated and non-treated platelets when compared to sterile specimens. Both on laser as well as air powder-treated specimens, cell growth was not significantly different from that on sterile specimens. Air powder treatment led to microscopically visible alterations of the implant surface whereas laser-treated surfaces remained unchanged. Both air powder and Er : YAG laser irradiation have a good potential to remove cytotoxic bacterial components from implant surfaces. At the irradiation parameters investigated, the Er : YAG laser ensures a reliable decontamination of implants in vitro without altering surface morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0501.2004.01056.x | DOI Listing |
Dent Mater J
September 2025
Department of Operative Dentistry, Nihon University School of Dentistry.
This study aimed to determine the influence of air abrasion on the shear bond strength (SBS) of universal adhesives when using different abrasive powders. The AquaCare Twin served as the injection device. The prepared bovine dentin specimens were air- abraded with alumina particles or bioactive glass before applying the universal adhesive (All Bond Universal, Clearfil Universal Bond Quick ER, or Scotchbond Universal Plus Adhesive).
View Article and Find Full Text PDFEnviron Int
September 2025
Centre for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an 710054, China. Electronic address:
Background: Nutritional supplements and environments have been linked with food allergy (FA), but little research has explored their interactions on children's FA.
Objectives: To explore the associations between early-life nutritional supplements, household environmental factors (HEFs), and outdoor air pollutant (OAP) exposures, and their interactions on children's FAs.
Methods: We collected 20,730 surveyed questionnaires from five Chinese cities, covering data on individual characteristics, health outcomes, and HEFs.
Proc Natl Acad Sci U S A
September 2025
Department of Surgery, The University of Chicago, Chicago, IL, 60637.
Self-assembled thin films respond to external loads via surface instabilities that are critical to their functionality in both biology and technology. Lipid monolayers at the air-liquid interface are one such system. Tunability between out-of-plane buckling (e.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Ballygunge, Kolkata, 700019, West Bengal, India.
Insect silk is a naturally occurring protein that forms semicrystalline threads when exposed to air. The Asian weaver ant, Oecophylla smaragdina (Formicidae: Hymenoptera), frequently uses silks for leaf weaving in nest construction to maintain its integrity and durability. The silk imparts resilience and durability to the nests, preventing fracturing or breaking during many natural disasters, particularly heavy rainfall and strong winds.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.
Inspired by the electron-withdrawing ability of nitroxide radicals, a novel open-shell material, EDOT-TPAO is reported, synthesized via one-step demethylation and oxidation of its closed-shell precursor, EDOT-TPAOMe. Time-dependent density functional theory calculations confirm an acceptor-donor-acceptor configuration of EDOT-TPAO where radical termini act as electron acceptors. This structural transformation narrows the optical bandgap from 2.
View Article and Find Full Text PDF