98%
921
2 minutes
20
Statistically valid detection of evoked responses from magnetoencephalographic (MEG) sensors is complicated by temporal autocorrelation. By decorrelating time series and transforming them toward normality, the discrete wavelet transform (DWT) allows the analyst to test for an association between stimulus and sensor time series with appropriate degrees of freedom. Eswaran et al. (Neurosci. Lett. 2002a;331:128-32) used a 151-channel fetal MEG system to obtain serial recordings from 10 pregnant subjects. There were 3-8 recordings per subject. In each recording session, the fetus was stimulated by 500Hz and 1KHz tones with a relative frequency of 80-20%, respectively. In this new analysis of the same data, the fetal MEG signals were compared to two different stimulus waveforms: the frequent tone and the Novel stimulus, defined as a change in pitch. WaveDetect was developed to determine whether there was a significant association between the stimuli and the MEG traces. This test is performed by taking the DWT of each series and then computing the Spearman correlation between the wavelet coefficients for an appropriate scale. A significant response (i.e., correlated stimulus-sensor pair) was detected from each patient. This result suggests that the combination of serial recordings and WaveDetect may ensure reliable detection of auditory evoked responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2004.04.003 | DOI Listing |
J Neurophysiol
September 2025
Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Repetition suppression, the reduced neural response upon repeated presentation of a stimulus, can be explained by models focussing on bottom-up (i.e. adaptation) or top-down (i.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFElife
September 2025
Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, United States.
Fragile X syndrome (FXS), a leading inherited cause of intellectual disability and autism, is frequently accompanied by sleep and circadian rhythm disturbances. In this study, we comprehensively characterized these disruptions and evaluated the therapeutic potential of a circadian-based intervention in the fragile X mental retardation 1 () knockout (KO) mouse. The KO mice exhibited fragmented sleep, impaired locomotor rhythmicity, and attenuated behavioral responses to light, linked to an abnormal retinal innervation and reduction of light-evoked neuronal activation in the suprachiasmatic nucleus.
View Article and Find Full Text PDFStroke
September 2025
Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China (H.Z., K.H., Q.G.).
Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.
Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.
Neurotrauma Rep
August 2025
Department of Radiology, Weill Cornell Medicine; New York, New York, USA.
Traumatic brain injury (TBI) impairs attention and executive function, often through disrupted coordination between cognitive and autonomic systems. While electroencephalography (EEG) and pupillometry are widely used to assess neural and autonomic responses independently, little is known about how these systems interact in TBI. Understanding their coordination is essential to identify compensatory mechanisms that may support attention under conditions of neural inefficiency.
View Article and Find Full Text PDF