98%
921
2 minutes
20
Pathophysiological functions of cardiac cystic fibrosis transmembrane conductance regulator (cCFTR) in ischemia are not well known. Using neonatal rat ventricular cardiomyocytes in primary culture in this study, we thus examined whether the CFTR protein is expressed and is functioning as a cAMP-activated anion channel on the plasma membrane under ischemic conditions. After the cells were subjected to simulated ischemia (O(2) and glucose deprivation), an up-regulation of the CFTR expression was transiently observed in the membrane fraction by Western blot. A peak expression of mature CFTR protein was found at 3 h of ischemia, and thereafter the signal diminished gradually. In contrast, the results of Northern blot indicated that the expression level of CFTR mRNA changed little until 3 h of ischemia, whereas the level slightly decreased after 8 h of ischemia. An immunohistochemical examination showed, in agreement with the results of Western blot analysis, that the expression of CFTR protein on the plasma membrane became most prominent at 3 h of ischemia, whereas the plasmalemmal CFTR signal was markedly reduced after 8 h of ischemia. Whole-cell recordings showed that the cardiomyocytes responded to cAMP with an activation of time- and voltage-independent currents that contained an anion-selective component sensitive to CFTR Cl(-) channel blockers (NPPB and glibenclamide) but not to a stilbene-derivative conventional Cl(-) channel blocker (SITS). This cAMP-activated Cl(-) channel current was found to be enhanced after an application of ischemic stress for 3 to 4 h. These findings indicate that a plasmalemmal expression of CFTR is transiently enhanced under glucose-free hypoxic conditions presumably because of a posttranslational control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2170/jjphysiol.53.357 | DOI Listing |
J Mater Chem B
September 2025
Major in Bionano Engineering, School of Bio-Pharmaceutical Convergence, Hanyang University, Ansan, 155-88, Republic of Korea.
Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.
View Article and Find Full Text PDFMater Horiz
September 2025
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Dispersing iridium onto high-specific-surface-area supports is a widely adopted strategy to maximize iridium utilization in anode catalysts of proton exchange membrane water electrolysis (PEMWE). However, here we demonstrate that the overall cell performance, including initial efficiency and long-term stability, does not benefit from the typical high specific surface area of catalyst supports. The conventional understanding that high iridium utilization on high-specific-surface-area supports increases activity holds only in aqueous electrolytes, while under the typical working conditions of PEMWE, the mass transport within the anode catalyst layers plays a more significant role in the overall performance.
View Article and Find Full Text PDFBMB Rep
September 2025
Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Center, Inje University, Busan 47392, Korea; Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, K
Patients with multiple myeloma develop resistance to thalidomide during therapy, and the mechanisms to counteract thalidomide resistance remain elusive. Here, we explored the interaction between cereblon and mitochondrial function to mitigate thalidomide resistance in multiple myeloma. Measurements of cell viability, ATP production, mitochondrial membrane potential, mitochondrial ROS, and protein expression via western blotting were conducted in vitro using KSM20 and KMS26 cells to assess the impact of thalidomide on multiple myeloma.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni
B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.
View Article and Find Full Text PDFJ Neurochem
September 2025
Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany.
Recent evidence indicates that the concentration of ATP remains stable during neuronal activity due to activity-dependent ATP production. However, the mechanisms of activity-dependent ATP production remain controversial. To stabilize the ATP concentration, feedforward mechanisms, which may rely on calcium or the sodium-potassium pump, do not require changes in the ATP and ADP concentrations.
View Article and Find Full Text PDF