98%
921
2 minutes
20
The P-boranophosphates are efficient and near perfect mimics of natural nucleic acids in permitting reading and writing of genetic information with high yield and accuracy. Substitution of a borane (-BH3) group for oxygen in the phosphate ester bond creates an isoelectronic and isosteric mimic of natural nucleotide phosphate esters found in mononucleotides, i.e., AMP and ATP, and in RNA and DNA polynucleotides. Compared to natural nucleic acids, the boranophosphate RNA and DNA analogs demonstrate increased lipophilicity and resistance to endo- and exonucleases, yet they retain negative charge and similar spatial geometry. Borane groups can readily be introduced into the NTP and dNTP nucleic acid monomer precursors to produce alpha-P-borano nucleoside triphosphate analogs (e.g., NTPalphaB and dNTPalphaB). The NTPalphaB and dNTPalphaB are, in fact, good to excellent substrates for RNA and DNA polymerases, respectively, and allow ready enzymatic synthesis of RNA and DNA with P-boranophosphate linkages. Further, boranophosphate polymer products are good templates for replication, transcription, and gene expression; boronated RNA products are also suitable for reverse transcription to cDNA. Fully substituted boranophosphate DNA can activate the RNase H cleavage of RNA in RNA:DNA hybrids. Moreover, certain dideoxy-NTPalphaB analogs appear to be better substrates for viral reverse transcriptases than the regular ddNTPs, and may offer promising prodrug alternatives in antiviral therapy. These properties make boranophosphates promising candidates for diagnostics; aptamer selection; gene therapy; and antiviral, antisense, and RNAi therapeutics. The boranophosphates constitute a versatile family of phosphate mimics for processing genetic information and modulating gene function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1281.004 | DOI Listing |
Biochem J
September 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India.
Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).
View Article and Find Full Text PDFCurr Microbiol
September 2025
Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.
A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.
Unlabelled: Cholesterol 25-hydroxylase (CH25H), an interferon-stimulated gene (ISG), has been implicated in broad-spectrum antiviral immunity. Here, we identify CH25H as a potent suppressor of hepatitis B virus (HBV) replication that significantly outperforms IFN-α in reducing HBV DNA, pregenomic RNA (pgRNA), HBsAg, and HBeAg, without inducing cytotoxicity. However, CH25H is weakly expressed in hepatocytes and only modestly induced by type I interferon.
View Article and Find Full Text PDFJ Cell Physiol
September 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.
View Article and Find Full Text PDF