Design of a miniature implantable left ventricular assist device using CAD/CAM technology.

J Artif Organs

Department of Electronics and Information, Graduate School of Science and Engineering, Hokkaido Tokai University, 5-1-1-1 Minami-Sawa, Minami-ku, Sapporo 005-8601, Japan.

Published: March 2004


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we developed a new miniature motor-driven pulsatile left ventricular assist device (LVAD) for implantation into a Japanese patient of average build by means of computer-aided design and manufacturing (CAD/CAM) technology. A specially designed miniature ball-screw and a high-performance brushless DC motor were used in an artificial heart actuator to allow miniaturization. A blood pump chamber (stroke volume 55 ml) and an inflow and outflow port were designed by computational fluid dynamics (CFD) analysis. The geometry of the blood pump was evaluated using the value of index of pump geometry (IPG) = (Reynolds shear stress) x (occupied volume) as a quantitative index for optimization. The calculated value of IPG varied from 20.6 Nm to 49.1 Nm, depending on small variations in pump geometry. We determined the optimum pump geometry based on the results of quantitative evaluation using IPG and qualitative evaluation using the flow velocity distribution with blood flow tracking. The geometry of the blood pump that gave lower shear stress had more optimum spiral flow around the diaphragm-housing (D-H) junction. The volume and weight of the new LVAD, made of epoxy resin, is 309 ml and 378 g, but further miniaturization will be possible by improving the geometry of both the blood pump and the back casing. Our results show that our new design method for an implantable LVAD using CAD/CAM promises to improve blood compatibility with greater miniaturization.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10047-003-0223-yDOI Listing

Publication Analysis

Top Keywords

blood pump
16
geometry blood
12
pump geometry
12
left ventricular
8
ventricular assist
8
assist device
8
cad/cam technology
8
shear stress
8
pump
7
blood
6

Similar Publications

Methods for experimentally increasing circulating acyl-CoA-binding protein (ACBP) levels in mice under chronic restraint stress.

Methods Cell Biol

September 2025

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.

Chronic restraint stress (CRS) is a widely recognized model to study stress-induced anorexia and metabolic dysregulation in mice. Acyl-coenzyme A-binding protein (ACBP) has emerged as a critical player in metabolic regulation, with potential implications for stress-related disorders. This study presents two complementary methodologies to artificially elevate circulating Acyl-CoA-binding protein (ACBP) levels in mice under CRS.

View Article and Find Full Text PDF

Background: Postoperative cognitive dysfunction (POCD) occurs in 20% to 80% of patients following cardiac surgical interventions. The incidence of delirium is from 20% to 50%. Impaired cerebral autoregulation (CA) during cardiopulmonary bypass (CPB) contributes to these issues.

View Article and Find Full Text PDF

Optimized FDA Blood Pump: A Case Study in System-Level Customized Ventricular Assist Device Designs.

Ann Biomed Eng

September 2025

Department of Mechanical Engineering, Koc University, Rumeli Feneri Campus, Sarıyer, 34450, Istanbul, Turkey.

Purpose: The design and development of ventricular assist devices have heavily relied on computational tools, particularly computational fluid dynamics (CFD), since the early 2000s. However, traditional CFD-based optimization requires costly trial-and-error approaches involving multiple design cycles. This study aims to propose a more efficient VAD design and optimization framework that overcomes these limitations.

View Article and Find Full Text PDF

Bibliometric analysis of immune-related acute kidney injury induced by cancer immunotherapy (2000-2025).

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy but are increasingly linked to immune-related kidney injury (irKI). This study presents the first bibliometric analysis of irKI research (2000-2025), aiming to identify key trends, mechanistic insights, and pharmacological risk factors. We analyzed 2,179 publications to understand the evolution of irKI research, focusing on areas like T cell-mediated tubular injury, immune system-driven inflammation, and changes in metabolism.

View Article and Find Full Text PDF

Management of diabetes mellitus in hemodialysis is highly complex due to increased glycemic variability and hypoglycemic risk. The use of technologies applied to diabetes has been shown to improve glycemic control, however data in dialysis patients are limited. To describe the efficacy and safety of the minimed 780G AHCL system in a stable hemodialysis patient and during hospitalization in the Intensive Care Unit (ICU).

View Article and Find Full Text PDF