98%
921
2 minutes
20
We report that the EphB receptor ligand, ephrin-B1, may act bifunctionally as both a branch repellent and attractant to control the unique mechanisms in mapping the dorsal-ventral (DV) retinal axis along the lateral-medial (LM) axis of the optic tectum. EphB receptors are expressed in a low to high DV gradient by retinal ganglion cells (RGCs), and ephrin-B1 is expressed in a low to high LM gradient in the tectum. RGC axons lack DV ordering along the LM tectal axis, but directionally extend interstitial branches that establish retinotopically ordered arbors. Recent studies show that ephrin-B1 acts as an attractant in DV mapping and in controlling directional branch extension. Modeling indicates that proper DV mapping requires that this attractant activity cooperates with a repellent activity in a gradient that mimics ephrin-B1. We show that ectopic domains of high, graded ephrin-B1 expression created by retroviral transfection repel interstitial branches of RGC axons and redirect their extension along the LM tectal axis, away from their proper termination zones (TZs). In contrast, the primary RGC axons are unaffected and extend through the ectopic domains of ephrin-B1 and arborize at the topographically correct site. However, when the location of a TZ is coincident with ectopic domains of ephrin-B1, the domains appear to inhibit arborization and shape the distribution of arbors. Our findings indicate that ephrin-B1 selectively controls, through either attraction or repulsion, the directional extension and arborization of interstitial branches extended by RGC axons arising from the same DV position: branches that arise from axons positioned lateral to the correct TZ are attracted up the gradient of ephrin-B1 and branches that arise from axons positioned medial to the same TZ are repelled down the ephrin-B1 gradient. Alternatively, EphB receptor signaling may act as a 'ligand-density sensor' and titrate signaling pathways that promote branch extension toward an optimal ephrin-B1 concentration found at the TZ; branches located either medial or lateral to the TZ would encounter a gradient of increasingly favored attachment in the direction of the TZ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.00467 | DOI Listing |
Sci China Life Sci
August 2025
Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu,
Primary open-angle glaucoma (POAG) is the leading cause of irreversible blindness worldwide, primarily due to the degeneration of retinal ganglion cells (RGCs). In this study, we reported vav guanine nucleotide exchange factor 2 (VAV2) as a POAG-associated gene. Through whole exome sequencing (WES) of 398 Han Chinese POAG patients and 2,010 controls, we discovered nine rare VAV2 variants linked to POAG (P_burden=1.
View Article and Find Full Text PDFBiomaterials
August 2025
State Key Laboratory of Eye Health, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027, China; Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Ch
Neuroinflammation microenvironment and retinal ganglion cell (RGC) apoptosis are two critical barriers to axonal regeneration following traumatic optic neuropathy (TON). To overcome these challenges, we developed an innovative dual drug delivery strategy utilizing oriented porous nanofiber (OF) and ciliary neurotrophic factor (CNTF)-loaded delivery systems, aiming to promote axonal regeneration and restore RGC survival. Cerium oxide nanoparticles (Ce NPs) were physically mixed with poly(L-lactic acid)/polycaprolactone (PLA/PCL) solution to prepare oriented porous nanofibers (OF-Ce) via electrospinning and solvent evaporation techniques.
View Article and Find Full Text PDFActa Biomater
August 2025
State Key Laboratory of Eye Health, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Oujiang Laboratory (Zhejiang
Optic nerve injury triggers progressive degeneration of retinal ganglion cells (RGCs) and axonal loss, driven by inhibitory microenvironmental factors such as glial scarring, myelin debris, and growth-inhibitory signaling. Physical stimuli such as photothermal and photoelectric stimulations have gained attention, yet little is known about their potential on normal cells or the optic nerve due to setbacks from over-exposure. Photothermal stimulus presents photoelectric cues and, at the same time, energy conversion for heat generation.
View Article and Find Full Text PDFBio Protoc
August 2025
The Scripps Research Institute, Neuroscience Department and Dorris Neuroscience Center, La Jolla, CA, USA.
The process of moving proteins and organelles along the axon is essential for neuronal survival and function, ensuring proper communication between the cell body and distant synapses. The efficient and precise delivery of proteins via axon transport is critical for processes ranging from synaptic plasticity and neurotransmission to neuronal growth and maintenance. However, the identities of all the transported proteins have only recently begun to be investigated.
View Article and Find Full Text PDFEye Vis (Lond)
August 2025
State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Background: The visual pathway, consisting of the eye, optic nerve, and brain, serves as a valuable model for studying neural regeneration. The exceptional regenerative capacity of the zebrafish visual system enables detailed investigation of neural repair mechanisms in vivo. Although the transparency of zebrafish larvae permits real-time imaging of axonal regeneration following transection, previous methodological limitations such as pigment interference and suboptimal imaging protocols have hindered high-resolution analyses of structural recovery and cellular interaction throughout the entire visual pathway after optic nerve injury.
View Article and Find Full Text PDF