98%
921
2 minutes
20
T cell-specific expression of human and mouse CD3delta is known to be governed by an enhancer element immediately downstream from the gene. Here we demonstrate by transgenic and in vitro studies that the murine CD3delta (mCD3delta) promoter prefers to be expressed in cells of the T lineage. Deletion analyses of a promoter segment (-401/+48 bp) followed by transient transfections indicate that upstream elements between -149 and -112 bp contribute to full expression of the gene. Furthermore, a core promoter region -37/+29 appears to contribute to a T cell specificity. Using substitution mutant scanning, four positive and one negative regulatory elements were found within the mCD3delta core promoter. The first two positive elements comprise two classical initiator-like sites, which recruit TFII-I, whereas a third contains a functional Ets binding site. Immediately adjacent to the observed transcription start site is a negative element that utilizes the transcription regulator YY1. The last positive regulatory element contains a potentially functional CREB binding site and the minor transcriptional start site. Because NERF-2, Elf-1, and Ets-1 are expressed preferentially in lymphocytes and because, in addition, YY1 represses the promoter activity strongly in non-T cells, we conclude that the combination of these transcription factors contributes to the T cell-specific expression pattern of mouse CD3delta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M201025200 | DOI Listing |
Sci Rep
September 2025
Department of Pediatrics, Division of Medical Genetics, Duke University, 2301 Erwin Rd, Durham, NC, 27710, USA.
Proc Natl Acad Sci U S A
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De
Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.
View Article and Find Full Text PDFNew Phytol
September 2025
College of Biology, Hunan University, Changsha, 410082, China.
In legume root nodules, rhizobia invade host cells to form symbiosomes that drive atmospheric nitrogen fixation. Although the metabolic roles of infected cells (ICs) are well established, the contributions of adjacent uninfected cells (UCs) have remained largely unexplored. Here, through forward genetics methods, we identify DEBINO4, a phosphoenolpyruvate carboxylase (PEPC) uniquely expressed in UCs, as a pivotal regulator of carbon metabolism essential for sustaining symbiosome function and nitrogen assimilation.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Cardiothoracic Surgery, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, 200052, People's Republic of China.
Impaired clinical fracture healing remains a major challenge, with surgical treatment often insufficient in patients with metabolic disorders or comorbidities such as diabetes and osteoporosis. Recent advances in metabolomics have brought the Sirtuin protein family to the forefront of bone regeneration research. These NAD⁺-dependent deacetylases exhibit cell-specific expression and regulate critical processes in osteoblasts and osteoclasts, linking glucose metabolism with bone remodeling.
View Article and Find Full Text PDFAnn Rheum Dis
September 2025
Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA.
Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.
Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.