Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The largest replicative protein of coronaviruses is known as p195 in the avian infectious bronchitis virus (IBV) and p210 (p240) in the mouse hepatitis virus. It is autocatalytically released from the precursors pp1a and pp1ab by one zinc finger-containing papain-like protease (PLpro) in IBV and by two paralogous PLpros, PL1pro and PL2pro, in mouse hepatitis virus. The PLpro-containing proteins have been recently implicated in the control of coronavirus subgenomic mRNA synthesis (transcription). By using comparative sequence analysis, we now show that the respective proteins of all sequenced coronaviruses are flanked by two conserved PLpro cleavage sites and share a complex (multi)domain organization with PL1pro being inactivated in IBV. Based upon these predictions, the processing of the human coronavirus 229E p195/p210 N terminus was studied in detail. First, an 87-kDa protein (p87), which is derived from a pp1a/pp1ab region immediately upstream of p195/p210, was identified in human coronavirus 229E-infected cells. Second, in vitro synthesized proteins representing different parts of pp1a were autocatalytically processed at the predicted site. Surprisingly, both PL1pro and PL2pro cleaved between p87 and p195/p210. The PL1pro-mediated cleavage was slow and significantly suppressed by a non-proteolytic activity of PL2pro. In contrast, PL2pro, whose proteolytic activity and specificity were established in this study, cleaved the same site efficiently in the presence of the upstream domains. Third, a correlation was observed between the overlapping substrate specificities and the parallel evolution of PL1pro and PL2pro. Collectively, our results imply that the p195/p210 autoprocessing mechanisms may be conserved among coronaviruses to an extent not appreciated previously, with PL2pro playing a major role. A large subset of coronaviruses may employ two proteases to cleave the same site(s) and thus regulate the expression of the viral genome in a unique way.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009867PMC
http://dx.doi.org/10.1074/jbc.M104097200DOI Listing

Publication Analysis

Top Keywords

pl1pro pl2pro
12
proteases cleave
8
mouse hepatitis
8
hepatitis virus
8
human coronavirus
8
pl2pro
6
autocatalytic release
4
release putative
4
putative rna
4
virus
4

Similar Publications

The role of IBV PL1pro in virus replication and suppression of host innate immune responses.

BMC Vet Res

December 2023

College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, Hubei Province, 434025, China.

Background: Coronavirus papain-like proteases (PLpros) play a crucial role in virus replication and the evasion of the host immune response. Infectious bronchitis virus (IBV) encodes a proteolytically defective remnant of PL1pro and an active PL2pro. However, the function of PL1pro in IBV remains largely unknown.

View Article and Find Full Text PDF

Coronaviruses encode two classes of cysteine proteases, which have narrow substrate specificities and either a chymotrypsin- or papain-like fold. These enzymes mediate the processing of the two precursor polyproteins of the viral replicase and are also thought to modulate host cell functions to facilitate infection. The papain-like protease 1 (PL1(pro)) domain is present in nonstructural protein 3 (nsp3) of alphacoronaviruses and subgroup 2a betacoronaviruses.

View Article and Find Full Text PDF

Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication.

J Virol

April 2007

Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, The Queen's University of Belfast, UK, and Kantonal Hospital St. Gallen, Research Department, 9007 St. Gallen, Switzerland.

Expression of the exceptionally large RNA genomes of CoVs involves multiple regulatory mechanisms, including extensive proteolytic processing of the large replicase polyproteins, pp1a and pp1ab, by two types of cysteine proteases: the chymotrypsin-like main protease and papain-like accessory proteases (PLpros). Here, we characterized the proteolytic processing of the human coronavirus 229E (HCoV-229E) amino-proximal pp1a/pp1ab region by two paralogous PLpro activities. Reverse-genetics data revealed that replacement of the PL2pro active-site cysteine was lethal.

View Article and Find Full Text PDF

The coronavirus replicase gene encodes one or two papain-like proteases (termed PL1pro and PL2pro) implicated in the N-terminal processing of the replicase polyprotein and thus contributing to the formation of the viral replicase complex that mediates genome replication. Using consensus fold recognition with the 3D-JURY meta-predictor followed by model building and refinement, we developed a structural model for the single PLpro present in the severe acute respiratory syndrome coronavirus (SCoV) genome, based on significant structural relationships to the catalytic core domain of HAUSP, a ubiquitin-specific protease (USP). By combining the SCoV PLpro model with comparative sequence analyses we show that all currently known coronaviral PLpros can be classified into two groups according to their binding site architectures.

View Article and Find Full Text PDF

The largest replicative protein of coronaviruses is known as p195 in the avian infectious bronchitis virus (IBV) and p210 (p240) in the mouse hepatitis virus. It is autocatalytically released from the precursors pp1a and pp1ab by one zinc finger-containing papain-like protease (PLpro) in IBV and by two paralogous PLpros, PL1pro and PL2pro, in mouse hepatitis virus. The PLpro-containing proteins have been recently implicated in the control of coronavirus subgenomic mRNA synthesis (transcription).

View Article and Find Full Text PDF