Publications by authors named "Zuratul Ain Abdul Hamid"

Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative procedures used to repair periodontal defects caused by periodontitis. In both procedures, a barrier membrane is placed at the interface between the soft tissue and the periodontal defect, serving to impede the infiltration of soft tissue while creating a secluded space for periodontal regeneration. Recently, barrier membranes based on chitosan (CS) have emerged as a promising avenue for these applications.

View Article and Find Full Text PDF

Biodiesel production from Calophyllum inophyllum oil in Indonesia produces significant biomass waste, including seed shells. This study explores the conversion of the seed shell of Calophyllum inophyllum into nanocrystalline cellulose (NCC) via consecutive alkalization, bleaching and hydrolysis using various organic acids. Scanning electron microscopy (SEM) analysis showed a reduction in the diameter of cellulose fibers from 21.

View Article and Find Full Text PDF

Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery.

View Article and Find Full Text PDF

Tissue-engineered polymeric implants are preferable because they do not cause a significant inflammatory reaction in the surrounding tissue. Three-dimensional (3D) technology can be used to fabricate a customised scaffold, which is critical for implantation. This study aimed to investigate the biocompatibility of a mixture of thermoplastic polyurethane (TPU) and polylactic acid (PLA) and the effects of their extract in cell cultures and in animal models as potential tracheal replacement materials.

View Article and Find Full Text PDF

Cosmetics made from natural ingredients are increasingly popular because they contain bioactive compounds which can provide many health benefits, more environmentally friendly and sustainable. The health benefits obtained from natural-based ingredients include anti-aging, photoprotective, antioxidant, and anti-inflammatory. This article reviewed the potential of selected flavonoids from bajakah tampala ( Hassk.

View Article and Find Full Text PDF

This study illustrated the potential applications of thermoresponsive poly(-isopropylacrylamide) (PNIPAm) grafted nylon membranes with different grafting yields and grafting architecture. The thermoresponsive gating performance at temperatures below and above the lower critical solution temperature (LCST) of PNIPAm (32 °C) were demonstrated. The linear PNIPAm-grafted nylon membrane exhibited a sharp response over the temperature range 20-40 °C.

View Article and Find Full Text PDF

In this study, water at high temperatures (150, 175, 200 °C) and in a vacuum state (-0.1 MPa) was applied to graphite nanosheets to enhance surface activity to promote the formation of oxygen-containing functional groups through supercritical water treatment. Nylon 610 nanocomposites (with treated or untreated nanosheets as nanofillers) were then synthesized using interfacial polymerization.

View Article and Find Full Text PDF

Increased life expectancy has led to an increase in the use of bone substitutes in numerous nations, with over two million bone-grafting surgeries performed worldwide each year. A bone defect can be caused by trauma, infections, and tissue resections which can self-heal due to the osteoconductive nature of the native extracellular matrix components. However, natural self-healing is time-consuming, and new bone regeneration is slow, especially for large bone defects.

View Article and Find Full Text PDF

This review provides an intensive overview of flame retardant coating systems. The occurrence of flame due to thermal degradation of the polymer substrate as a result of overheating is one of the major concerns. Hence, coating is the best solution to this problem as it prevents the substrate from igniting the flame.

View Article and Find Full Text PDF

The critical feature in trachea replacement is to provide a hollow cylindrical framework that is laterally stable and longitudinally flexible, facilitating cartilage and epithelial tissue formation. Despite advanced techniques and sources of materials used, most inherent challenges are related to the complexity of its anatomy. Limited blood supply leads to insufficient regenerative capacity for cartilage and epithelium.

View Article and Find Full Text PDF

Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative treatments targeted at reconstructing damaged periodontal tissue and bone caused by periodontitis. During GTR/GBR treatment, a barrier membrane is placed in the interface between the soft tissue and the periodontal defect to inhibit soft tissue ingrowth and creating a space for the infiltration of slow-growing bone cells into the defect site. Recently, asymmetric resorbable-based barrier membrane has received a considerable attention as a new generation of GTR/GBR membrane.

View Article and Find Full Text PDF

(L.) Philipson [Asteraceae] () is an important medicinal plant native to Brazil, and it is widely known as a toothache plant. A plethora of studies have demonstrated the antioxidant activities of and few studies on the stimulatory effects on alkaline phosphatase (ALP) secretion from bone cells; however, there is no study on its antioxidant and anabolic activity on bone cells.

View Article and Find Full Text PDF

The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days.

View Article and Find Full Text PDF

Stem cell-based therapy appears as a promising strategy to induce regeneration of damaged and diseased tissues. However, low survival, poor engraftment and a lack of site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues and offer several advantages as cell delivery vehicles.

View Article and Find Full Text PDF

Carbon can form different allotropes due to its tetravalency. Different forms of carbon such as carbon nanotubes (CNTs), carbon nanofibers, graphene, fullerenes, and carbon black can be used as nanofillers in order to enhance the properties of polymer nanocomposites. These carbon nanomaterials are of interest in nanocomposites research and other applications due to their excellent properties, such as high Young's Modulus, tensile strength, electrical conductivity, and specific surface area.

View Article and Find Full Text PDF

Surgical reconstruction of extensive tracheal lesions is challenging. It requires a mechanically stable, biocompatible, and nontoxic material that gradually degrades. One of the possible solutions for overcoming the limitations of tracheal transplantation is a three-dimensional (3D) printed tracheal scaffold made of polymers.

View Article and Find Full Text PDF

The versatility of polymeric materials as healing agents to prevent any structure failure and their ability to restore their initial mechanical properties has attracted interest from many researchers. Various applications of the self-healing polymeric materials are explored in this paper. The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined.

View Article and Find Full Text PDF

Oxidative stress and inflammation are two common risk factors of various life-threatening disease pathogenesis. In recent years, medicinal plants that possess antioxidant and anti-inflammatory activities were extensively studied for their potential role in treating and preventing diseases. (), which has been traditionally used to treat toothache in Malaysia, contains various active metabolites responsible for its anti-inflammatory, antiseptic, and anesthetic bioactivities.

View Article and Find Full Text PDF

Alginate microspheres (AMs) have received much attention as a novel drug delivery system owing to various advantages of alginate such as inexpensiveness, nontoxicity, biocompatibility and biodegradability. The well-designed fabrication method is essential to achieve desired AMs suitable for specific drug delivery system. Reports on AMs preparation techniques have increased rapidly in the last decade.

View Article and Find Full Text PDF

An earlier study showed that the behaviour of chitosan-poly(methacrylic acid‑co‑N‑isopropylacrylamide) [chitosan‑p(MAA‑co‑NIPAM)] hydrogels synthesized at different reaction times are affected with regard to their pH and temperature sensitivities. The study was continued in this paper to identify the effects of different reaction times on the degradation, efficiency of rifampicin (Rif) loading and the Rif release profile under two different pH conditions (acidic and basic). The results that were obtained showed that the hydrogel had a faster degradation rate in the acidic condition than in the basic condition, where there was a loss of approximately 50% and 20%, respectively in its original weight within two weeks.

View Article and Find Full Text PDF

Biodegradable polyesters such as poly(epsilon-caprolactone) (PCL) have a number of biomedical applications; however, their usage is often limited by a lack of biological functionality. In this paper, a PCL-based polymer containing pendent groups activated by 4-nitrophenyl chloroformate (NPC) and reactive toward primary amines has been cast into thin films. The reactivity of the films toward poly(l-lysine) and the cell adhesion peptide, GRGDS, was assessed, and their cell adhesive capabilities were characterized.

View Article and Find Full Text PDF