Publications by authors named "Zhushan Shao"

Microwave thermal remediation (TPH) is a promising remediation method for petroleum hydrocarbon contaminated soils due to its high energy efficiency and rapid heating capacity. However, the complexity of influencing factors and their nonlinear interactions often hinder the quantitative understanding of TPH removal rates. In this study, a prediction dataset containing 217 instances was constructed.

View Article and Find Full Text PDF

In this paper, we numerically investigate the dynamic response and explosion resistance of gradient aluminum foam sandwich tubes subjected to external blast loads. Based on 3D-Voronoi technology, we construct density-graded aluminum foam cores to systematically explore the influence of core density distribution, density gradient, and average relative density on the protective performance of these structures. Our primary objective is to identify optimal design parameters that maximize explosion mitigation capabilities while balancing energy absorption and specific energy absorption capacities.

View Article and Find Full Text PDF

Solid waste (SW) has become a problem hindering the economic and social development. Achieving the full green cycle from raw material to production of recycled building bricks (RBB) using SW is the focus of future research. In this paper, the research results of RBB manufacturing using SW in recent years are reviewed.

View Article and Find Full Text PDF

In this research, the combination of theoretical approach and numerical simulation was employed to comprehensively understand the initiation mechanism of time-delayed rockburst and analyze the time-delayed failure laws for surrounding rock after excavation unloading without prompt support. The investigations are principally at the angle of time and space, which refers to the creep property and damaged scope for surrounding rock. For the theoretical method, the analytical elastic and elastoplastic models for deep tunnel cross section and the creep model for brittle rock material from a microscopic view were combined.

View Article and Find Full Text PDF

The application of tunnel-slag-improved high liquid limit soil as filling materials in subgrade is a green environmental technology. This study explored the influence of tunnel slag mixing on the physical and mechanical properties of improved soils, based on the engineering background of Liyu highway, Guangxi Province, China. Firstly, the optimal moisture content, maximum dry density, shear strength parameters, California bearing ratio (CBR) and resilience modulus of plain and tunnel-slag-improved high liquid limit soils were experimentally determined.

View Article and Find Full Text PDF

The stability of deep rock engineering, especially during the excavation, is inextricably linked to the time-dependent mechanical properties of brittle rock. Therefore, the uniaxial creep test in a multilevel loading path is carried out, accompanying the real-time DIC (digital image correlation) and AE (acoustic emission) technologies. For the quartz sandstone, the lateral strain is more sensitive to increasing stress levels, and the lateral ductility is more significant during the creep process.

View Article and Find Full Text PDF

Shotcrete lining shows high resistance but extremely low deformability. The utilization of yielding elements in shotcrete lining, which leads to the so-called ductile lining, provides a good solution to cope with tunnel squeezing deformations. Although ductile lining exhibits great advantages regarding tunnel squeezing deformation control, little information has been comprehensively and systematically available for its mechanism and design.

View Article and Find Full Text PDF

To investigate the brittle creep failure process of rock material, the time-dependent properties of brittle rocks under the impact of homogeneity are analyzed by the numerical simulation method, RFPA-Creep (2D). Deformation is more palpable for more homogeneous rock material under the uniaxial creep loading condition. At a low stress level, diffusion creep may occur and transition to dislocation creep with increasing applied stress.

View Article and Find Full Text PDF

The accumulation of construction spoil has brought great challenges to urban construction and environmental protection. It is an effective way to solve the problem of construction spoil accumulation by using construction spoil to sinter brick. At the same time, it can also reduce the waste of clay resources and farmland destruction caused by the production of sintered brick.

View Article and Find Full Text PDF