Objectives: To evaluate the clinical effect of transcutaneous electrical acupoint stimulation(TEAS) on preoperative analgesia for the elderly patients with intertrochanteric fracture of femur.
Methods: A total of 126 elderly patients with intertrochanteric fracture of femur were randomized into an observation group(63 cases, one case dropped out) and a control group(63 cases, 2 cases dropped out ). In the observation group, TEAS was operated at Huantiao (GB30), Yanglingquan (GB34), Zusanli (ST36) and Kuanguxue (Extra) on the affected side.
Despite tremendous efforts in catalyzing the sulfur reduction reaction (SRR) in high-capacity lithium-sulfur (Li-S) batteries, understanding the universal and quantitative structure-property relationships (UQSPRs) of SRR remains elusive. Such an unclarity results from the limitations of first-principle calculations in analyzing vast, high-dimensional, and heterogeneous data. Here, we present a collaborative data-driven model for heterogeneous catalytic knowledge fusion, detecting over 2,900 articles on SRR published between 2004 and 2024.
View Article and Find Full Text PDFNatl Sci Rev
July 2025
Understanding anode failure mechanisms in lithium metal batteries (LMBs) is crucial for their use in energy storage, as the anode directly affects battery stability and electrolyte selection. Unfortunately, post-mortem methods reveal failure outcomes but often miss dynamic progressions, obscuring cause-and-effect relationships in failure evolution. Leveraging domain knowledge informed machine learning and a 4-year dataset of over 18 000 cycles and 12 million data points, from cells cycled to failure, we uncovered a correlation between initial lithium plating/stripping behavior and subsequent anode changes, enabling the identification of early indicators for distinct failure types.
View Article and Find Full Text PDFDynamically adaptive materials that respond to varying environmental stimuli have garnered significant attention due to their potential applications. Nevertheless, developing single-molecule-based intrinsically adaptive materials capable of responding to multiple stimuli remains a challenge. Herein, we present an intrinsically adaptive salicylaldimine featuring a urea group, demonstrating versatile adaptations across three different stacking states in response to light, mechanical, and thermal stimuli, thus facilitating controllable switching between photochromism and photoluminescence.
View Article and Find Full Text PDFLithium-sulfur (Li─S) batteries offer a promising avenue for the next generation of energy-dense batteries. However, it is quite challenging to realize practical Li─S batteries under limited electrolytes and high sulfur loading, which may exacerbate problems of interface deterioration and low sulfur utilization. Herein, the coordination and mediation chemistry of arylboronic acids that enable energy-dense and long-term-cycling Li─S batteries is proposed.
View Article and Find Full Text PDFThe unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.
View Article and Find Full Text PDFNeuroscience
January 2025
Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS.
View Article and Find Full Text PDFRapid and accurate state of health (SOH) estimation of retired batteries is a crucial pretreatment for reuse and recycling. However, data-driven methods require exhaustive data curation under random SOH and state of charge (SOC) retirement conditions. Here, we show that the generative learning-assisted SOH estimation is promising in alleviating data scarcity and heterogeneity challenges, validated through a pulse injection dataset of 2700 retired lithium-ion battery samples, covering 3 cathode material types, 3 physical formats, 4 capacity designs, and 4 historical usages with 10 SOC levels.
View Article and Find Full Text PDFMolecular doping plays a crucial role in modulating the performance of polymeric semiconductor (PSC) materials and devices. Despite the development of numerous molecular dopants and doping methods over the past few decades, achieving highly efficient doping of PSCs remains challenging, primarily because of the inadequate matching of frontier energy levels between the host polymers and the dopants, which is critical for facilitating charge transfer. In this work, we introduce a novel doping method termed photoexcitation-assisted molecular doping (PE-MD), capable of transcending limitations imposed by energy level disparities through the mediation of efficient photoinduced electron transfer between polymers and dopants.
View Article and Find Full Text PDFMetal phosphide anode materials encounter poor reversibility of the discharge product (metal and NaP) and large volume variation, resulting in low initial Coulombic efficiency (ICE) and severe capacity degradation. Herein, a bimetallic phosphide (CoMoP) with three-dimensional ordered porous (3DOP) nanoconstruction was fabricated, which presents a reduced Gibbs free energy change (Δ) of redox reaction between Co-Mo/NaP and CoMoP and improved conductivity compared to CoP and MoP. Additionally, the 3DOP architecture could disperse stress and reduce strain during cycling, thus improving structural stability of CoMoP.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Developing visible-light-driven fluorescent photoswitches in the solid state remains an enormous challenge in smart materials. Such photoswitches are obtained from salicylaldimines through excited-state intramolecular proton transfer (ESIPT) and subsequent cis-trans isomerization strategies. By incorporating a bulky naphthalimide fluorophore into a Schiff base, three photoswitches achieve dual-mode changes (both in color and fluorescence) in the solid state.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries suffer from severe polysulfide shuttle, retarded sulfur conversion kinetics and notorious lithium dendrites, which has curtailed the discharge capacity, cycling lifespan and safety. Engineered catalysts act as a feasible strategy to synchronously manipulate the evolution behaviors of sulfur and lithium species. Herein, a chlorine bridge-enabled binuclear copper complex (Cu-2-T) is in situ synthesized in electrolyte as homogeneous catalyst for rationalizing the Li-S redox reactions.
View Article and Find Full Text PDFTargeted nanoparticles have been extensively explored for their ability to deliver their payload to a selective cell population while reducing off-target side effects. The design of actively targeted nanoparticles requires the grafting of a ligand that specifically binds to a highly expressed receptor on the surface of the targeted cell population. Optimizing the interactions between the targeting ligand and the receptor can maximize the cellular uptake of the nanoparticles and subsequently improve their activity.
View Article and Find Full Text PDFWhen cells are stressed, DNA from energy-producing mitochondria can leak out and drive inflammatory immune responses if not cleared. Cells employ a quality control system called autophagy to specifically degrade damaged components. We discovered that mitochondrial transcription factor A (TFAM)-a protein that binds mitochondrial DNA (mtDNA)-helps to eliminate leaked mtDNA by interacting with the autophagy protein LC3 through an autolysosomal pathway (we term this nucleoid-phagy).
View Article and Find Full Text PDFTwo cylindrical section hydrocyclones can suppress particle misplacement by regulating the circulation flow, but few researchers have investigated the effect of the cylindrical height ratio. In this paper, numerical simulations and physical tests were conducted to investigate the effect of height ratio on the particle motion behavior and separation performance of the two cylindrical section hydrocyclone. According to the numerical simulation results, with increasing height ratio, the separation cut size decreased, the separation accuracy and recovery rate of medium and coarse particles in the underflow increased, the coarse particle misplacement in overflow decreased significantly, and the proportion of medium particle circulation flow gradually increased.
View Article and Find Full Text PDFSolid polymer electrolytes exhibit enhanced Li conductivity when plasticized with highly dielectric solvents such as N,N-dimethylformamide (DMF). However, the application of DMF-containing electrolytes in solid-state batteries is hindered by poor cycle life caused by continuous DMF degradation at the anode surface and the resulting unstable solid-electrolyte interphase. Here we report a composite polymer electrolyte with a rationally designed Hofmann-DMF coordination complex to address this issue.
View Article and Find Full Text PDFEngineering atom-scale sites are crucial to the mitigation of polysulfide shuttle, promotion of sulfur redox, and regulation of lithium deposition in lithium-sulfur batteries. Herein, a homonuclear copper dual-atom catalyst with a proximal distance of 3.5 Å is developed for lithium-sulfur batteries, wherein two adjacent copper atoms are linked by a pair of symmetrical chlorine bridge bonds.
View Article and Find Full Text PDFJ Am Chem Soc
February 2024
Flexible membranes with ultrathin thickness and excellent mechanical properties have shown great potential for broad uses in solid polymer electrolytes (SPEs), on-skin electronics, etc. However, an ultrathin membrane (<5 μm) is rarely reported in the above applications due to the inherent trade-off between thickness and antifailure ability. We discover a protic solvent penetration strategy to prepare ultrathin, ultrastrong layered films through a continuous interweaving of aramid nanofibers (ANFs) with the assistance of simultaneous protonation and penetration of a protic solvent.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2024
Study Design: A retrospective study.
Objectives: This study aimed to check how accurately cages were inserted and how they affected the radiological results in oblique lumbar interbody fusion (OLIF) at L2-L5.
Methods: A total of 137 patients diagnosed with lumbar degenerative disease, 184 intervertebral discs were included.
Unsorted retired batteries with varied cathode materials hinder the adoption of direct recycling due to their cathode-specific nature. The surge in retired batteries necessitates precise sorting for effective direct recycling, but challenges arise from varying operational histories, diverse manufacturers, and data privacy concerns of recycling collaborators (data owners). Here we show, from a unique dataset of 130 lithium-ion batteries spanning 5 cathode materials and 7 manufacturers, a federated machine learning approach can classify these retired batteries without relying on past operational data, safeguarding the data privacy of recycling collaborators.
View Article and Find Full Text PDFNat Protoc
November 2023
The biofunctionalization of synthetic materials has extensive utility for biomedical applications, but approaches to bioconjugation typically show insufficient efficiency and controllability. We recently developed an approach by building synthetic DNA scaffolds on biomaterial surfaces that enables the precise control of cargo density and ratio, thus improving the assembly and organization of functional cargos. We used this approach to show that the modulation and phenotypic adaptation of immune cells can be regulated using our precisely functionalized biomaterials.
View Article and Find Full Text PDF