Traumatic spinal cord injury (SCI) is a major clinical challenge, imposing a significant burden on both patients and healthcare systems. The complexity of SCI stems from its multifactorial pathogenesis, incorporating a variety of regulating factors. Despite the exploration of mechanisms of SCI pathophysiology and the development of biomedical therapies, current clinical interventions are still limited to surgical interventions and rehabilitative care.
View Article and Find Full Text PDFThe amelioration of refractory diabetic ulcers presents a formidable conundrum on a global scale, attributable to the elevated peril of contagion and protracted convalescence durations. Within the purlieus of this reparative epoch, the deployment of efficacious wound coverings endowed with both angiogenesis and antibacterial attributes is of paramount significance. Hydrogel wound dressings are distinguished by their elevated biocompatibility, adhesive tenacity, and innate regenerative capacity.
View Article and Find Full Text PDFOsteogenesis, osteoclastogenesis, and angiogenesis play crucial roles in bone regeneration. Parathyroid hormone (PTH), an FDA-approved drug with pro-osteogenic, pro-osteoclastogenic and proangiogenic capabilities, has been employed for clinical osteoporosis treatment through systemic intermittent administration. However, the successful application of PTH for local bone defect repair generally requires the incorporation and delivery by appropriate carriers.
View Article and Find Full Text PDFSkin wounds need an appropriate wound dressing to help prevent bacterial infection and accelerate wound closure. Bacterial cellulose (BC) with a three-dimensional (3D) network structure is an important commercial dressing. However, how to effectively load antibacterial agents and balance the antibacterial activity is a lingering issue.
View Article and Find Full Text PDFBackground: Wound healing is a process that requires angiogenesis and antibacterial activities and it remains a challenge for both experimental and clinical research worldwide. Zn has been reported to be widely involved in angiogenesis and exerts antibacterial effects, making it suitable as a treatment to promote wound healing. Therefore Zn-loaded adhesive bacterial cellulose hydrogel was designed to observe its angiogenic and antibacterial abilities in the wound healing process.
View Article and Find Full Text PDFMater Today Bio
December 2022
Wound healing and angiogenesis remain challenges for both clinical and experimental research worldwide. Periosteum-derived extracellular vesicles (P-sEVs) delivered by hydrogel dressings provide a potential strategy for wound defects to promote fast healing. In this study, we designed a NAGA/GelMA/Laponite/glycerol hydrogel wound dressing that can release P-sEVs to accelerate angiogenesis and wound healing (named P-sEVs@hydrogel) (-acryloyl glycinamide, NAGA).
View Article and Find Full Text PDFHydrogels have become an attractive option for tissue repair. A novel multifunctional hydrogel was developed using a two-step method involving photopolymerization and tannic acid (TA) solution incubation. The mechanical properties of this hydrogel were enhanced by the multi-hydrogen bond interaction between the TA and N-acryloyl glycinamide/gelatin methacrylate (NAGA/GelMA).
View Article and Find Full Text PDFBackground: Retraction and degenerative changes of chronic rotator cuff tears limit the healing capacity after routine surgical repair.
Purpose: To fabricate a mesenchymal stem cell-derived exosome (MSC-Exos) loaded patch and evaluate the effect of this patch on the activity of rabbit tenocytes in vitro and on the repair of chronic rotator cuff tears associated with degenerative changes in vivo.
Study Design: Controlled laboratory study.
Frequent dressing changes can result in secondary wound damage. Therefore, it is of great significance to construct a wound dressing that can be used for a long time without changing. Here, a double-network hydrogel was synthesized through hydrogen bonding interactions of tea polyphenol (TP)/glycerol with photo-crosslinked N-acryloyl glycinamide (NAGA), gelatin methacrylate (GelMA), and nanoclay hydrogel.
View Article and Find Full Text PDF