Publications by authors named "Zhengwei Qu"

Objective: To investigate gray-white matter injury in heatstroke using multimodal MRI, and precisely localize damaged white matter segments via automated fiber quantification (AFQ) with clinical correlation.

Results: Compared with the healthy control group, VBM revealed reduced volume in bilateral cerebellar anterior lobes and left fusiform gyrus. TBSS showed widespread white matter abnormalities.

View Article and Find Full Text PDF
Article Synopsis
  • * Key findings showed decreased activity in the left cuneus and right angular gyrus, while the right cerebellar_Crus1 had increased activity.
  • * Correlations were found between brain function measures and clinical assessments, indicating that altered brain functions could help evaluate the severity of heat stroke.
View Article and Find Full Text PDF

Equal channel angular extrusion (ECAE) is a solid-state extrusion process for modifying microstructures via severe plastic deformation without modifying the specimen cross section. In this study, changes in the microstructure and mechanical properties of polypropylene resulting from extrusion orientation route A (no rotation between extrusions) and extrusion orientation route C (a rotation of 180° between extrusions) are investigated using a 90° die-angle tooling outfitted with back pressure. Important differences are reported for the ECAE-induced deformation behavior between the two processing routes.

View Article and Find Full Text PDF

In this work, spherical flower-shaped composite carbonyl iron powder@MnO (CIP@MnO) with CIP as the core and ultrathin MnO nanosheets as the shell was successfully prepared by a simple redox reaction to improve oxidation resistance and electromagnetic wave absorption properties. The microwave-absorbing properties of CIP@MnO composites with different filling ratios (mass fractions of 20%, 40%, and 60% after mixing with paraffin) were tested and analyzed. The experimental results show that compared with pure CIP, the CIP@MnO composites have smaller minimum reflection loss and a wider effective absorption bandwidth than CIP (RL < -20 dB).

View Article and Find Full Text PDF

The aim of this article is to provide some insights on the osmo-inelastic response under stretching of annulus fibrosus of the intervertebral disc. Circumferentially oriented specimens of square cross section, extracted from different regions of bovine cervical discs (ventral-lateral and dorsal-lateral), are tested under different strain-rates and saline concentrations within normal range of strains. An accurate optical strain measuring technique, based upon digital image correlation, is used in order to determine the full-field displacements in the lamellae and fibers planes of the layered soft tissue.

View Article and Find Full Text PDF

Background: The role of the axial pre-strain on the torsional response of the intervertebral disc remains largely undefined. Moreover, the chemo-mechanical interactions in disc tissues are still unclear and corresponding data are rare in the literature. The paper deals with an in-vitro study of the pre-strain effect on the chemical sensitivity of the disc torsional response.

View Article and Find Full Text PDF

Degeneration of the intervertebral disc (IVD) is a leading source of chronic low back pain or neck pain, and represents the main cause of long-term disability worldwide. In the aim to relieve pain, total disc replacement (TDR) is a valuable surgical treatment option, but the expected benefit strongly depends on the prosthesis itself. The present contribution is focused on the synthetic mimic of the native IVD in the aim to optimally restore its functional anatomy and biomechanics, and especially its time-dependency.

View Article and Find Full Text PDF

With their gradual and continuous properties, functionally graded polymers (FGP) have high potentials to reproduce the regional variation in microstructure/property of the natural intervertebral disc and, therefore, the functional anatomy and biomechanics of the soft tissue. This paper evaluates by finite element analysis the biomechanical response and stress distribution of a novel disc prosthesis using FGP. The kinetics of the FGP parameters is designed using experimental data issued from linear ethylene copolymers over a wide crystallinity range.

View Article and Find Full Text PDF

The intervertebral disc exhibits a complex inelastic response characterized by relaxation, hysteresis during cyclic loading and rate dependency. All these inelastic phenomena depend on osmotic interactions between disc tissues and their surrounding chemical environment. Coupling between osmotic and inelastic effects is not fully understood, so this article aimed to study the influence of chemical conditions on the inelastic behaviour of the intervertebral disc in response to different modes of loading.

View Article and Find Full Text PDF

Background: More than a dozen of fungal immunomodulatory proteins (FIPs) have been identified to date, most of which are from Ganoderma species. However, little is known about the similarities and differences between different Ganoderma FIPs' bioactivities. In the current study, two FIP genes termed FIP-gap1 and FIP-gap2 from G.

View Article and Find Full Text PDF

The damage and crack resistance improvement of bioactive glass is of prime importance, particularly when applied to the repair of load-bearing bones. The present contribution is focused on the prediction of damage mechanisms and crack resistance under uniaxial compression of bioactive glass matrix composites reinforced with a particulate phase. In order to characterize the effects of voids and particles on the damage mechanisms and the macro-response, a two-step homogenization is performed by considering the two phases existing at two different scales: micro/meso through the homogenization of the porous matrix and then meso/macro through the periodic micro-field approach.

View Article and Find Full Text PDF