Publications by authors named "Ze-Cheng Yao"

Electrocatalytic C-N reductive coupling offers a sustainable and eco-friendly approach to producing value-added oximes. The challenge lies in the overstrong chemisorption of N-containing intermediates and carbonyl compounds on metal-based catalysts, which causes low Faradaic efficiency and yield rates, as well as undesired byproducts. Here, we propose a multiple secondary bond-mediated strategy for C-N coupling toward benzaldoxime on a nitrogen-doped graphene-like carbon catalyst (NC).

View Article and Find Full Text PDF

Electrocatalytic reduction (ECR) of furfural represents a sustainable route for biomass valorization. Unfortunately, traditional Cu-catalyzed ECR suffers from diversified product distribution and industrial-incompatible production rates, mainly caused by the intricate mechanism-performance relationship. Here, we manipulate hydrogenation pathways on Cu by introducing ceria as an auxiliary component, which enables the mechanism switching from proton-coupled electron transfer to electrochemical hydrogen-atom transfer (HAT) and thus high-speed furfural-to-furfuryl alcohol electroconversion.

View Article and Find Full Text PDF

Anion-exchange membrane fuel cell (AEMFC) is a cost-effective hydrogen-to-electricity conversion technology under a zero-emission scenario. However, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) impedes the commercial implementation of AEMFCs. Here, we develop a Pd single-atom-embedded NiN catalyst (Pd/NiN) with unconventional PdNi trimer sites to drive efficient and durable HOR in alkaline media.

View Article and Find Full Text PDF

The alkaline hydrogen oxidation reaction (HOR) involves the coupling of adsorbed hydrogen (H) and hydroxyl (OH) species and is thus orders of magnitude slower than that in acid media. According to the Sabatier principle, developing electrocatalysts with appropriate binding energy for both intermediates is vital to accelerating the HOR though it is still challenging. Herein, we propose an unconventional bilateral compressive strained Ni-Ir interface (Ni-Ir()) as efficient synergistic HOR sites.

View Article and Find Full Text PDF

Anion-exchange membrane fuel cells and Zn-air batteries based on non-Pt group metal catalysts typically suffer from sluggish cathodic oxygen reduction. Designing advanced catalyst architectures to improve the catalyst's oxygen reduction activity and boosting the accessible site density by increasing metal loading and site utilization are potential ways to achieve high device performances. Herein, we report an interfacial assembly strategy to achieve binary single-atomic Fe/Co-N with high mass loadings through constructing a nanocage structure and concentrating high-density accessible binary single-atomic Fe/Co-N sites in a porous shell.

View Article and Find Full Text PDF

With the potential to circumvent the need for scarce and cost-prohibitive platinum-based catalysts in proton-exchange membrane fuel cells, anion-exchange membrane fuel cells (AEMFCs) are emerging as alternative technologies with zero carbon emission. Numerous noble metal-free catalysts have been developed with excellent catalytic performance for cathodic oxygen reduction reaction in AEMFCs. However, the anodic catalysts for hydrogen oxidation reaction (HOR) still rely on noble metal materials.

View Article and Find Full Text PDF