Publications by authors named "Young Geun Park"

Continuous monitoring of physiological activities within the internal regions of three-dimensional (3D) organoids holds significant promise for advancing organoid-based research. However, conventional methods are constrained to capturing signals from the peripheral surfaces of organoids, limiting insights into internal dynamics. Here, we present a soft 3D bioelectrode platform for continuous intraorganoid signal monitoring.

View Article and Find Full Text PDF

Purpose: To quantitatively analyze choroidal vascular characteristics in branch retinal vein occlusion (BRVO) using wide-field indocyanine green angiography (wICG) and fluorescein angiography (wFA).

Methods: Retrospective analysis of 66 eyes (33 unilateral BRVO patients, including fellow eyes) was conducted. Quantitative measures included fractal dimension (FD), lacunarity (LAC), choroidal vessel density (CVD), total vessel length (TVL), mean vessel diameter (MVD), and blood vessel tortuosity (BVT).

View Article and Find Full Text PDF

To comprehend the volumetric neural connectivity of a brain organoid, it is crucial to monitor the spatiotemporal electrophysiological signals within the organoid, known as intra-organoid signals. However, previous methods risked damaging the three-dimensional (3D) cytoarchitecture of organoids, either through sectioning or inserting rigid needle-like electrodes. Also, the limited numbers of electrodes in fixed positions with non-adjustable electrode shapes were insufficient for examining the complex neural activity throughout the organoid.

View Article and Find Full Text PDF

Stimulating large volumes of neural networks using macroelectrodes can modulate disorder-associated brain circuits effectively. However, conventional solid-metal electrodes often cause unwanted brain damage due to their high mechanical stiffness. In contrast, low-modulus liquid metals provide tissue-like stiffness while maintaining macroscale electrode dimensions.

View Article and Find Full Text PDF

Purpose: Although leukemic retinopathy accounts for 80% of ocular complications in acute leukemia, its pathogenesis remains unclear. To evaluate changes in retinal and choroicapillaris and structural parameters in patients with acute leukemia, we analyzed the correlation between vascular perfusion metrics and laboratory parameters and assessed the changes after hematopoietic stem cell transplantation (HSCT).

Methods: Herein, 104 eyes of 52 patients aged 18 and above with acute leukemia were enrolled.

View Article and Find Full Text PDF

Conventional power-integrated wireless neural recording devices suffer from bulky, rigid batteries in head-mounted configurations, hindering the precise interpretation of the subject's natural behaviors. These power sources also pose risks of material leakage and overheating. We present the direct printing of a power-integrated wireless neural recording system that seamlessly conforms to the cranium.

View Article and Find Full Text PDF

Current soft neural probes are still operated by bulky, rigid electronics mounted to a body, which deteriorate the integrity of the device to biological systems and restrict the free behavior of a subject. We report a soft, conformable neural interface system that can monitor the single-unit activities of neurons with long-term stability. The system implements soft neural probes in the brain, and their subsidiary electronics which are directly printed on the cranial surface.

View Article and Find Full Text PDF

This study aimed to evaluate perivascular reflectivity in patients with branched retinal vascular obstruction (BRVO) using en-face optical coherence tomography (OCT). The study retrospectively analyzed 45 patients with recurrent BRVO, 30 with indolent BRVO, and 45 age- and sex-matched controls. Using a 3.

View Article and Find Full Text PDF

To investigate the preoperative morphology of the foveal avascular zone (FAZ) for prediction of the postoperative visual acuity in advanced idiopathic epiretinal membrane (ERM). 28 patients (28 eyes) with unilateral idiopathic ERM who underwent pars plana vitrectomy with internal limiting membrane peeling were included. Superficial FAZ was measured preoperatively in both eyes using optical coherence tomography angiography.

View Article and Find Full Text PDF

For electrocardiogram (ECG) detection, the position of conventional patch-type electrodes based on solid-state metals are difficult to manipulate after attachment and also can lead to poor interface with stretchable, rough skin surfaces. Herein, we present a liquid form of ECG electrodes that can be magnetically reconfigured on human skin by providing its conformal interfacing. These electrodes consist of biocompatible liquid-metal droplets where magnetic particles are homogeneously dispersed, and their conformal contact with skin can yield significantly low impedance as well as high signal-to-noise ratio of ECG peaks.

View Article and Find Full Text PDF

The purpose of this study is to evaluate choroidal hyperreflective foci (HRF) changes in central serous chorioretinopathy (CSC) on en-face optical coherence tomography (OCT). Retrospective analysis of 42 patients with unilateral CSC (84 eyes, including fellow eyes for controls) and 42 age- and sex-matched controls. With 4.

View Article and Find Full Text PDF

Purpose: To evaluate the choriocapillaris (CC) flow changes in branched retinal vascular obstruction (BRVO) on optical coherence tomography angiography (OCTA).

Methods: Retrospective analysis of 29 patients with unilateral BRVO (58 eyes, including unaffected fellow eyes for controls). 4.

View Article and Find Full Text PDF

Herein, we present an unconventional method for multimodal characterization of three-dimensional cardiac organoids. This method can monitor and control the mechanophysiological parameters of organoids within a single device. In this method, local pressure distributions of human-induced pluripotent stem-cell-derived cardiac organoids are visualized spatiotemporally by an active-matrix array of pressure-sensitive transistors.

View Article and Find Full Text PDF

Purpose: To evaluate the choriocapillaris (CC) flow in central serous chorioretinopathy (CSC) and determine the relationship between CC flow void with the choroidal thickness (CT) and choroidal vascularity index (CVI).

Methods: Retrospective analysis of 20 patients with CSC (40 eyes, including unaffected fellow eyes) and 20 age- and sex-matched controls. After compensation with optical coherence tomography (OCT) en-face structural image, the CC flow void (%) was measured using the phansalkar threshold with a window radius of 3 and 15 pixels.

View Article and Find Full Text PDF

The ability to form arbitrary 3D structures provides the next level of complexity and a greater degree of freedom in the design of electronic devices. Since recent progress in electronics has expanded their applicability in various fields in which structural conformability and dynamic configuration are required, high-resolution 3D printing technologies can offer significant potential for freeform electronics. Here, the recent progress in novel 3D printing methods for freeform electronics is reviewed, with providing a comprehensive study on 3D-printable functional materials and processes for various device components.

View Article and Find Full Text PDF

Purpose: To evaluate changes in choroidal vascular structure and aqueous cytokine levels in eyes with vitreoretinal lymphoma (VRL) after intravitreal methotrexate (MTX) treatment.

Methods: In this retrospective study, VRL patients who visited our hospital between October 2018 and July 2020 were reviewed. Aqueous samples were obtained before treatment and at clinical resolution after intravitreal MTX therapy.

View Article and Find Full Text PDF

Despite recent substantial advances in perovskite materials, their 3D integration capability for next-generation electronic devices is limited owing to their inherent vulnerability to heat and moisture with degradation of their remarkable optoelectronic properties during fabrication processing. Herein, a facile method to transfer the patterns of perovskites to planar or nonplanar surfaces using a removable polymer is reported. After fabricating perovskite devices on this removable polymer film, the conformal attachment of this film on target surfaces can place the entire devices on various substrates by removing this sacrificial film.

View Article and Find Full Text PDF

In recent studies related to bioelectronics, significant efforts have been made to form 3D electrodes to increase the effective surface area or to optimize the transfer of signals at tissue-electrode interfaces. Although bioelectronic devices with 2D and flat electrode structures have been used extensively for monitoring biological signals, these 2D planar electrodes have made it difficult to form biocompatible and uniform interfaces with nonplanar and soft biological systems (at the cellular or tissue levels). Especially, recent biomedical applications have been expanding rapidly toward 3D organoids and the deep tissues of living animals, and 3D bioelectrodes are getting significant attention because they can reach the deep regions of various 3D tissues.

View Article and Find Full Text PDF

Continuous detection of raised intraocular pressure (IOP) could benefit the monitoring of patients with glaucoma. Current contact lenses with embedded sensors for measuring IOP are rigid, bulky, partially block vision or are insufficiently sensitive. Here, we report the design and testing in volunteers of a soft and transparent contact lens for the quantitative monitoring of IOP in real time using a smartphone.

View Article and Find Full Text PDF

Wearable electronic devices that can monitor physiological signals of the human body to provide biomedical information have been drawing extensive interests for sustainable personal health management. Here, we report a human pilot trial of a soft, smart contact lens and a skin-attachable therapeutic device for wireless monitoring and therapy of chronic ocular surface inflammation (OSI). As a diagnostic device, this smart contact lens enables real-time measurement of the concentration of matrix metalloproteinase-9, a biomarker for OSI, in tears using a graphene field-effect transistor.

View Article and Find Full Text PDF

Wearable healthcare devices have garnered substantial interest for the realization of personal health management by monitoring the physiological parameters of individuals. Attaining the integrity between the devices and the biological interfaces is one of the greatest challenges to achieving high-quality body information in dynamic conditions. Liquid metals, which exist in the liquid phase at room temperatures, are advanced intensively as conductors for deformable devices because of their excellent stretchability and self-healing ability.

View Article and Find Full Text PDF

Despite various approaches to immunoassay and chromatography for monitoring cortisol concentrations, conventional methods require bulky external equipment, which limits their use as mobile health care systems. Here, we describe a human pilot trial of a soft, smart contact lens for real-time detection of the cortisol concentration in tears using a smartphone. A cortisol sensor formed using a graphene field-effect transistor can measure cortisol concentration with a detection limit of 10 pg/ml, which is low enough to detect the cortisol concentration in human tears.

View Article and Find Full Text PDF

There has been a great deal of interest in designing soft robots that can mimic a human system with haptic and proprioceptive functions. There is now a strong demand for soft robots that can sense their surroundings and functions in harsh environments. This is because the wireless sensing and actuating capabilities of these soft robots are very important for monitoring explosive gases in disaster areas and for moving through contaminated environments.

View Article and Find Full Text PDF

Direct 3D printing technologies to produce 3D optoelectronic architectures have been explored extensively over the last several years. Although commercially available 3D printing techniques are useful for many applications, their limits in printable materials, printing resolutions, or processing temperatures are significant challenges for structural optoelectronics in achieving fully 3D-printed devices on 3D mechanical frames. Herein, the production of active optoelectronic devices with various form factors using a hybrid 3D printing process in ambient air is reported.

View Article and Find Full Text PDF