Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Direct 3D printing technologies to produce 3D optoelectronic architectures have been explored extensively over the last several years. Although commercially available 3D printing techniques are useful for many applications, their limits in printable materials, printing resolutions, or processing temperatures are significant challenges for structural optoelectronics in achieving fully 3D-printed devices on 3D mechanical frames. Herein, the production of active optoelectronic devices with various form factors using a hybrid 3D printing process in ambient air is reported. This hybrid 3D printing system, which combines digital light processing for printing 3D mechanical architectures and a successive electrohydrodynamic jet for directly printing transparent pixels of organic light-emitting diodes at room temperature, can create high-resolution, transparent displays embedded inside arbitrarily shaped, 3D architectures in air. Also, the demonstration of a 3D-printed, eyeglass-type display for a wireless, augmented reality system is an example of another application. These results represent substantial progress in the development of next-generation, freeform optoelectronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891910 | PMC |
http://dx.doi.org/10.1002/advs.201901603 | DOI Listing |