The pursuit of quantitatively accurate electron correlation calculations for realistic large strongly correlated systems presents significant theoretical and computational challenges. These challenges stem primarily from two fundamental aspects: the inherent complexity of treating static correlations within extensive active spaces and the additional difficulty of incorporating dynamic correlation effects from the external space. In this comprehensive perspective, we systematically review and analyze state-of-the-art methodologies that address dynamic correlation beyond large active spaces, with particular emphasis on approaches that circumvent the computational burden associated with high-order reduced density matrices.
View Article and Find Full Text PDFAs one kind of approximation of the full configuration interaction solution, the selected configuration interaction (sCI) methods have been shown to be valuable for large active spaces. However, the inclusion of dynamic correlation beyond large active spaces is necessary for more quantitative results. Since the sCI wave function can provide a compact reference for multireference methods, previously, we proposed an externally contracted multireference configuration interaction method using the sCI reference reconstructed from the density matrix renormalization group wave function [ 4747-4755].
View Article and Find Full Text PDFJ Chem Theory Comput
August 2023
Thanks to the high compression of the matrix product state (MPS) form of the wave function and the efficient site-by-site iterative sweeping optimization algorithm, the density matrix normalization group (DMRG) and its time-dependent variant (TD-DMRG) have been established as powerful computational tools in accurately simulating the electronic structure and quantum dynamics of strongly correlated molecules with a large number (10) of quantum degrees of freedom (active orbitals or vibrational modes). However, the quantitative characterization of the quantum many-body behaviors of realistic strongly correlated systems requires a further consideration of the interaction between the embedded active subsystem and the remaining correlated environment, e.g.
View Article and Find Full Text PDFJ Comput Chem
May 2023
The accurate evaluation of electron correlations is highly necessary for the proper descriptions of the electronic structures in strongly correlated molecules, ranging from bond-dissociating molecules, polyradicals, to large conjugated molecules and transition metal complexes. For this purpose, in this paper, a new ab-initio quantum chemistry program Kylin 1.0 for electron correlation calculations at various quantum many-body levels, including configuration interaction (CI), perturbation theory (PT), and density matrix renormalization group (DMRG), is presented.
View Article and Find Full Text PDFNat Commun
December 2019
Excitons in two-dimensional (2D) materials are tightly bound and exhibit rich physics. So far, the optical excitations in 2D semiconductors are dominated by Wannier-Mott excitons, but molecular systems can host Frenkel excitons (FE) with unique properties. Here, we report a strong optical response in a class of monolayer molecular J-aggregates.
View Article and Find Full Text PDF