New Density Matrix Renormalization Group Approaches for Strongly Correlated Systems Coupled with Large Environments.

J Chem Theory Comput

Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thanks to the high compression of the matrix product state (MPS) form of the wave function and the efficient site-by-site iterative sweeping optimization algorithm, the density matrix normalization group (DMRG) and its time-dependent variant (TD-DMRG) have been established as powerful computational tools in accurately simulating the electronic structure and quantum dynamics of strongly correlated molecules with a large number (10) of quantum degrees of freedom (active orbitals or vibrational modes). However, the quantitative characterization of the quantum many-body behaviors of realistic strongly correlated systems requires a further consideration of the interaction between the embedded active subsystem and the remaining correlated environment, e.g., a larger number (10) of external orbitals in electronic structure or infinite condensed-phase phononic modes in nucleus dynamics. To this end, we introduced three new post-DMRG and TD-DMRG approaches, namely (1) DMRG2sCI-MRCI and DMRG2sCI-ENPT by the reconstruction of selected configuration interaction (sCI) type of compact reference function from DMRG coefficients and the use of externally contracted MRCI (multireference configuration interaction) and Epstein-Nesbet perturbation theory (ENPT), without recourse to the expensive high order -electron reduced density matrices (-RDMs). (2) DMRG combined with RR-MRCI (renormalized residue-based MRCI), which improves the computational accuracy and efficiency of internally contracted (ic) MRCI by renormalizing the contracted bases with small-sized buffer environment(s) of a few external orbitals as probes based on quantum information theory. (3) HM (hierarchical mapping)-TD-DMRG in which a large environment is reduced to a small number of renormalized environmental modes (which accounts for the most vital system-environment interactions) through stepwise mapping transformation. These advances extend the efficacy of highly accurate DMRG/TD-DMRG computations to the quantitative characterization of the electronic structure and quantum dynamics in realistic strongly correlated systems coupled with large environments and are reviewed in this paper.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.2c01316DOI Listing

Publication Analysis

Top Keywords

correlated systems
12
electronic structure
12
density matrix
8
systems coupled
8
coupled large
8
large environments
8
structure quantum
8
quantum dynamics
8
quantitative characterization
8
realistic correlated
8

Similar Publications

BackgroundA stable guiding system is essential for successful carotid artery stenting (CAS), particularly when navigating tortuous aortic or supra-aortic anatomy. However, data on the mechanical behavior of stent delivery systems remain scarce.ObjectiveTo assess and compare the bending stiffness and trackability of five commercially available carotid stent delivery systems using bench-top experiments.

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Aim: Hydrocephalus is a condition characterized by the excessive accumulation of cerebrospinal fluid in the brain's ventricular system, leading to ventricular enlargement and increased intracranial pressure. This study aimed to evaluate whether transfontanel ultrasonography could serve as a practical and less complex alternative to brain magnetic resonance imaging in infants with hydrocephalus.

Material And Methods: In this prospective study, 54 infants diagnosed with hydrocephalus underwent both transfontanel ultrasonography and brain magnetic resonance imaging.

View Article and Find Full Text PDF

UBA5-epileptic encephalopathy: new patient, a novel variant, and a review of epileptic phenotypes.

Epileptic Disord

September 2025

Unit of Child Neurology and Psychiatry, ASST-Spedali Civili of Brescia, Brescia, Italy.

Protein ufymilation is a post-translational modification implicated in the regulation of several cellular processes. Biallelic variants in UBA5 causing a functional alteration of its protein product have been associated with early-onset epileptic encephalopathy 44 (EIEE44), a rare disease for which 28 patients have been described in the literature at present. We here report on the clinical and detailed EEG phenotype of a novel patient affected by EIEE44.

View Article and Find Full Text PDF

Bridging electrostatic screening and ion transport in lithium salt-doped ionic liquids.

J Chem Phys

September 2025

Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.

Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.

View Article and Find Full Text PDF