Publications by authors named "Yaoping Lu"

Photovoltaic solar-blind ultraviolet photodetectors (SBPDs) operate independently of an external power source, addressing critical demands in extreme environments, such as forest fire detection and atmospheric ozone layer monitoring. Gallium oxide (GaO) offers significant potential for extreme applications due to its radiation resistance and high-temperature stability. Here, we present a novel homoepitaxy strategy to produce an "atomic smooth" step-flow GaO photosensitive layer, successfully fabricating device-grade GaO/n-GaO homojunctions for photovoltaic SBPDs.

View Article and Find Full Text PDF

The unclear p-type conduction mechanism and lack of reliable p-type GaO severely hinder GaO-based high-voltage electronics. Here, we demonstrate in situ nitrogen (N) doping via metal-organic chemical vapor deposition homoepitaxy using NO as oxygen source and acceptor dopant. Structural and compositional analyses confirm efficient N incorporation (favored by N-Ga bonding) compensating residual Si/H donors without compromising crystallinity.

View Article and Find Full Text PDF

Objective: To assess the expression levels of autoimmune regulator (Aire) and inducible costimulator molecule ligand (ICOSL), as well as T follicular helper (Tfh) cell numbers in rheumatoid arthritis (RA) patients, and to explore their relationship with RA severity. We also aimed to investigate the effect of Aire on arthritis and its underlying mechanisms.

Methods: The expression levels of Aire, ICOSL, and Tfh cell numbers were measured in RA patients.

View Article and Find Full Text PDF

With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence.

View Article and Find Full Text PDF

Nanobodies, which represent the next generation of antibodies due to their unique properties, face a significant limitation in their poor physical adsorption on solid supports. In this study, we successfully discovered polystyrene binding nanobodies from a synthetic nanobody library. Notably, bivalent nanobody B2 exhibited high affinity for polystyrene (0.

View Article and Find Full Text PDF

This research employs first-principles calculations to address the challenges presented by processing complexity and low damage tolerance in transition metal borides. The study focuses on designing and investigating MAB phase compounds of MAlB (M = Cr, Mo, W). We conduct a comprehensive assessment of the stability, phononic, electronic, elastic, and optical properties of CrAlB, MoAlB, and WAlB.

View Article and Find Full Text PDF

With the evolution of artificial intelligence, the explosive growth of data from sensory terminals gives rise to severe energy-efficiency bottleneck issues due to cumbersome data interactions among sensory, memory, and computing modules. Heterogeneous integration methods such as chiplet technology can significantly reduce unnecessary data movement; however, they fail to address the fundamental issue of the substantial time and energy overheads resulting from the physical separation of computing and sensory components. Brain-inspired in-sensor neuromorphic computing (ISNC) has plenty of room for such data-intensive applications.

View Article and Find Full Text PDF

Aims: Type 1 diabetes, as a kind of autoimmune diseases, usually results from the broken-down of self-tolerance. Autoimmune regulator (Aire), as a transcription factor, induces peripheral tolerance by regulating Toll-like receptor (TLR) expression in dendritic cells (DCs). Several studies have recently identified a small population of perforin-expressing DCs, which is an important population of tolerogenic DCs (tolDCs) that restricts autoreactive T cells in vivo through a perforin-mediated mechanism.

View Article and Find Full Text PDF

The ultra-wide bandgap (~6.2 eV), thermal stability and radiation tolerance of AlN make it an ideal choice for preparation of high-performance far-ultraviolet photodetectors (FUV PDs). However, the challenge of epitaxial crack-free AlN single-crystalline films (SCFs) on GaN templates with low defect density has limited its practical applications in vertical devices.

View Article and Find Full Text PDF

Tumor microenvironment is the general term for all non-cancer components and their metabolites in tumor tissue. These components include the extracellular matrix, fibroblasts, immune cells, and endothelial cells. In the early stages of tumors, the tumor microenvironment has a tumor suppressor function.

View Article and Find Full Text PDF
Article Synopsis
  • The expression of tissue-specific antigens (TSAs) in medullary thymic epithelial cells (mTECs) is crucial for eliminating autoreactive T cells, helping maintain immune tolerance.
  • Key transcription factors, Aire and Fezf2, drive the expression of TSAs, and their deficiencies can lead to various autoimmune diseases like type 1 diabetes and rheumatoid arthritis.
  • This review focuses on comparing the roles of Aire and Fezf2 in regulating TSAs and their molecular mechanisms related to autoimmune disorders, aiming to inform better diagnostic and therapeutic strategies.
View Article and Find Full Text PDF

Sulforaphane (SFN), a potent antioxidant and antiinflammatory agent, has been shown to protect against cancers especially at early stages. However, how SFN affects UVB-mediated epigenome/DNA methylome and transcriptome changes in skin photodamage has not been fully assessed. Herein, we investigated the transcriptomic and DNA methylomic changes during tumor initiation, promotion, and progression and its impact and reversal by SFN using next-generation sequencing (NGS) technology.

View Article and Find Full Text PDF

Nonmelanoma skin cancers (NMSCs) are the most common type of skin cancers. Major risk factors for NMSCs include exposure to ultraviolet (UV) irradiation. Ursolic acid (UA) is a natural triterpenoid enriched in blueberries and herbal medicinal products, and possess anticancer activities.

View Article and Find Full Text PDF

Exposure to ultraviolet B (UVB) irradiation results in multitude of cellular responses including generation of reactive oxygen species and DNA damage and is responsible for non-melanoma skin cancers (NMSCs). Although genetic mutation is well documented, the epi-mutation, the alteration in epigenetics, remains elusive. In this study, we utilized CpG Methyl-seq to identify a genome-wide DNA CpG methylation, to profile the DNA methylation in UVB-irradiated SKH-1 mouse skin epidermis and non-melanoma skin papillomas at various stages.

View Article and Find Full Text PDF

Unlabelled: Our previous studies indicated that decreasing visceral adipose tissue by surgical removal of the parametrial fat pads inhibited UVB-induced carcinogenesis in SKH-1 mice fed a high fat diet (HFD), but not a low fat diet (LFD) indicating that the parametrial fat tissue from mice fed a HFD played a role in skin carcinogenesis.

Objective: In the present study, we sought to investigate how a HFD may influence the intrinsic properties of the parametrial fat tissue to influence UVB-induced skin tumor formation.

Methods And Results: Immunohistochemical staining, adipokine array, and flow cytometry showed that parametrial fat tissue from mice fed a HFD had a higher density of macrophage-fused dead adipocytes (crown-like structures), more adipokines, and stimulated the production of more reactive oxygen species compared with parametrial fat tissue from mice fed a LFD.

View Article and Find Full Text PDF

Our previous studies demonstrated that the topical application of caffeine is a potent inhibitor of UVB-induced carcinogenesis and selectively increases apoptosis in tumors but not in non-tumor areas of the epidermis in mice that are at a high risk for developing skin cancer. While this effect is mainly through a p53 independent pathway, the mechanism by which caffeine inhibits skin tumor formation has not been fully elucidated. Since caffeine is a non-specific phosphodiesterase inhibitor, we investigated the effects of several PDE inhibitors on the formation of sunburn cells in mouse skin after an acute exposure to ultraviolet light B (UVB).

View Article and Find Full Text PDF

Nrf2 plays a critical role in defending against oxidative stress and inflammation. We previously reported that Nrf2 confers protection against ultraviolet-B (UVB)-induced inflammation, sunburn reaction, and is involved in sulforaphane-mediated photo-protective effects in the skin. In this study, we aimed to demonstrate the protective role of Nrf2 against inflammation-mediated extracellular matrix (ECM) damage induced by UVB irradiation.

View Article and Find Full Text PDF

Aims: Ultraviolet irradiation and carcinogens have been reported to induce epigenetic alterations, which potentially contribute to the development of skin cancer. We aimed to study the genome-wide DNA methylation profiles of skin cancers induced by ultraviolet B (UVB) irradiation and 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-1,3-acetate (TPA).

Main Methods: Methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing was utilized to ascertain the DNA methylation profiles in the following common mouse skin cancer models: SKH-1 mice treated with UVB irradiation and CD-1 mice treated with DMBA/TPA.

View Article and Find Full Text PDF

Nrf2 is a transcription factor that plays critical roles in regulating the expression of cellular defensive antioxidants and detoxification enzymes. However, the role of Nrf2 and Nrf2's epigenetics reprogramming in skin tumor transformation is unknown. In this study, we investigated the inhibitory role and epigenetics of Nrf2 on tumor transformation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse skin epidermal JB6 (JB6 P+) cells and the anticancer effect of sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables.

View Article and Find Full Text PDF

Immunohistochemical evaluation of serial stored paraffin sections from 42 keratoacanthomas and 11 squamous cell carcinomas demonstrated that skin tumors from UVB-exposed mice showed an inverse relationship (>95%) between p53 protein expression and phospho-Chk1 (Ser317), but not phospho-Chk1 (Ser345) protein expression. Tumors expressing high levels and large areas of p53 protein had no detectable phospho-Chk1 (Ser317), whereas tumors expressing high levels and large areas of phospho-Chk1 (Ser317) protein had no detectable p53. Squamous cell carcinomas that demonstrated heterogeneous p53 and phospho-Chk1 (Ser317) protein expression within the same tumor showed that areas expressing p53 were negative for phospho-Chk1 (Ser317) immunostaining while areas expressing phospho-Chk1 (Ser317) were negative for p53.

View Article and Find Full Text PDF

Ultraviolet B (UVB)-pretreated SKH-1 mice were treated with water, caffeine (0.1 mg/ml), voluntary running wheel exercise (RW) or caffeine together with RW for 14 wk. Treatment of the mice with caffeine, RW, or caffeine plus RW decreased skin tumors per mouse by 27%, 35%, and 62%, respectively, and the tumor volume per mouse was decreased by 61%, 70%, and 85%, respectively.

View Article and Find Full Text PDF

Sunlight-induced non-melanoma skin cancer is the most prevalent cancer in the United States with more than two million cases per year. Several studies have shown an inhibitory effect of caffeine administration on UVB-induced skin cancer in mice, and these studies are paralleled by epidemiology studies that indicate an inhibitory effect of coffee drinking on non-melanoma skin cancer in humans. Strikingly, decaffeinated coffee consumption had no such inhibitory effect.

View Article and Find Full Text PDF

Oral administration of green tea, black tea, or caffeine (but not the decaffeinated teas) inhibited ultraviolet B radiation (UVB)-induced skin carcinogenesis in SKH-1 mice. Studies with caffeine indicated that its inhibitory effect on the ATR/Chk1 pathway is an important mechanism for caffeine's inhibition of UVB-induced carcinogenesis. The regular teas or caffeine increased locomotor activity and decreased tissue fat.

View Article and Find Full Text PDF

Removal of the parametrial fat pads (partial lipectomy) from female SKH-1 mice fed a high-fat diet inhibited UVB-induced carcinogenesis, but this was not observed in mice fed a low-fat chow diet. Partial lipectomy in high-fat-fed mice decreased the number of keratoacanthomas and squamous cell carcinomas per mouse by 76 and 79%, respectively, compared with sham-operated control mice irradiated with UVB for 33 wk. Immunohistochemical analysis indicated that partial lipectomy increased caspase 3 (active form) positive cells by 48% in precancerous epidermis away from tumors, by 68% in keratoacanthomas, and by 224% in squamous cell carcinomas compared with sham-operated control mice.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of (-)-epigallocatechin-3-gallate (EGCG) on newly developed high-fat/Western-style diet-induced obesity and symptoms of metabolic syndrome. Male C57BL/6J mice were fed a high fat/Western-style (HFW; 60% energy as fat and lower levels of calcium, vitamin D(3), folic acid, choline bitartrate, and fiber) or HFW with EGCG (HFWE; HFW with 0.32% EGCG) diet for 17 wks.

View Article and Find Full Text PDF