Understanding the mechanical behaviour of graphite electrode coatings during lithiation is crucial for optimizing high-performance lithium-ion batteries. The first experiment reveals the elastoplastic response of liquid electrolyte-immersed graphite active particles bonded with sodium carboxymethyl cellulose and styrene butadiene rubber (CMC/SBR) across various states of charge (SOCs). Simultaneously, we have developed a phenomenological model to simulate the mechanical response of graphite-CMC/SBR composites during lithiation by tracking the evolution of mechanical properties within graphite particles and the composite's porosity.
View Article and Find Full Text PDFThe current collector, one of the main components in the manufacture of composite electrodes, is mainly used to enhance the mechanical stability and improve the performance and cycle performance of the electrodes. During the electrochemical reaction, the lithium diffusion can induce compressive stress and affect the mechanical performance, lifespan, and performance of batteries. Therefore, this study analyzed the influence of copper foil on the mechanical response and degradation performance of electrodes.
View Article and Find Full Text PDFThe mechanical response is one of the main factors that influence the capacity and number of cycles of lithium batteries, which hinder its wide application. Therefore, it is crucial to perform an in-depth investigation of the electro-chemo-mechanical coupling performance and work mechanism of battery electrodes during the electrochemical reaction process. Usually, graphite is the main active material used in commercially used batteries, while silicon is gaining worldwide attention because of its large energy density.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2024
Spinel cathode materials have great application prospects in lithium batteries (LIBs) due to their characteristics of abundant raw materials, simple preparation processes, and cobalt-free nature. During the electrochemical cycles, the specific capacity of the electrodes decreases significantly due to the dissolution of excess metal ions and mechanical degradation, which hinder their further application and development. Here, a bending curvature measurement system (BCMS) was designed to simultaneously measure the mechanical properties of the spinel cathodes during the electrochemical reaction.
View Article and Find Full Text PDFSilicon, renowned for its remarkable energy density, has emerged as a focal point in the pursuit of high-energy storage solutions for the next generation. Nevertheless, silicon electrodes are known to undergo significant volume expansion during the insertion of lithium ions, leading to structural deformation and the development of internal stresses, and causing a rapid decline in battery capacity and overall lifespan. To gain deeper insights into the intricacies of charge rate effects, this study employs a combination of in situ measurements and computational modeling to elucidate the cyclic performance of composite silicon electrodes.
View Article and Find Full Text PDFAqueous emulsifiable diphenylmethane diisocyanate (EMDI) can form strong chemical bonds with aqueous adhesives due to the large number of isocyanate (-NCO) groups, which can enhance the mechanical performance of the adhesives. Currently, sodium carboxymethyl cellulose (CMC)-styrene butadiene rubber (SBR) emulsion aqueous bonding agents are widely used in the preparation of anode materials for lithium-ion batteries (LIBs). In this study, EMDI was added to a porous silicon-carbon composite electrode prepared from CMC-SBR, and the evolution of the mechanical properties of the electrode with the EMDI content was first investigated quasi-static uniaxial tensile and interfacial strength tests.
View Article and Find Full Text PDFPolymers (Basel)
June 2024
In this research, an oxidized starch/styrene-butadiene rubber system with high capability of absorbing electromagnetic energy was adopted as the main component, the effect of oxidized starch content on the bonding and mechanical properties of aqueous polymer isocyanate (API) after high-frequency curing was evaluated, and the effect mechanisms were explored by combining thermodynamic tests and material characterization methods. Our findings revealed that the addition of oxidized starch enhanced the mechanical properties of API after high-frequency curing and the increase in the amount of oxidized starch enhanced the improvement effect of high-frequency curing on API bonding and mechanical properties. At 5 wt% oxidized starch, high-frequency curing improved API bonding properties by 18.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2024
Polyethylene oxide (PEO)-based solid polymer electrolytes (SPEs) have good ionic conductivity and flexibility, and is a key component of all-solid-state lithium batteries (ASSLBs). Therefore, the mechanical integrity of PEO-based SPEs during cell operation needs to be urgently evaluated. Here, we conducted a series of tensile and shear adhesion performance tests on PEO-LiTFSI electrolyte and LiFePO electrode adhesion samples at various temperatures and quenching rates.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2024
The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial to high C-rate applications. The Li-ion concentration is crucial in determining the mechanical integrity and structural stability of electrodes. In this work, graphite is selected as the working electrode due to its widespread use in the electric vehicle industry.
View Article and Find Full Text PDFPre-stretching as a method for directing polymer crystallization offers a promising solution for addressing the limitations of solid polymer electrolytes in flexible batteries at ambient temperatures. In this study, we have investigated the ionic conductivity, mechanical behaviour, and microstructural and thermal properties of polyethylene oxide (PEO)-based polymer electrolytes with varying pre-strain levels. The results indicate that thermal stretching-induced pre-deformation can significantly increase the through-plane ionic conductivity, in-plane strength, stiffness of solid electrolytes, and cell-specific capacity.
View Article and Find Full Text PDFThe prediction of electrochemical performance is the basis for long-term service of all-solid-state-battery (ASSB) regarding the time-aging of solid polymer electrolytes. To get insight into the influence mechanism of electrolyte aging on cell fading, we have established a continuum model for quantitatively analyzing the capacity evolution of the lithium battery during the time-aging process. The simulations have unveiled the phenomenon of electrolyte-aging-induced capacity degradation.
View Article and Find Full Text PDFEnsuring the material durability of an electrolyte is a prerequisite for the long-term service of all-solid-state batteries (ASSBs). Herein, to investigate the mechanical integrity of a solid polymer electrolyte (SPE) in an ASSB upon electrochemical operation, we have implemented a sequence of quasi-static uniaxial tension and stress relaxation tests on a lithium perchlorate-doped poly (vinyl alcohol) electrolyte, and then discussed the viscoelastic behavior as well as the strength of SPE film during the physical aging process. On this basis, a continuum electrochemical-mechanical model is established to evaluate the stress evolution and mechanical detriment of aging electrolytes in an ASSB at a discharge state.
View Article and Find Full Text PDFThe mechanical stability of aqueous binder and conductive composites (BCC) is the basis of the long-term service of composite electrodes in advanced secondary batteries. To evaluate the stress evolution of BCC in composite electrodes during electrochemical operation, we established an electrochemical-mechanical model for multilayer spherical particles that consists of an active material and a solid-electrolyte-interface (SEI)-enclosed BCC. The lithium-diffusion-induced stress distribution was studied in detail by coupling the influence of SEI and the viscoelasticity of inorganic-filler-doped polymeric bonding material.
View Article and Find Full Text PDFPolymers (Basel)
June 2020
Information of the relaxation behaviors of polymer film is crucial to judge the durability of emulsion polymer isocyanate (EPI) as a structural adhesive for bonding timber-based products. A sequence of tensile creep tests and free volume evaluation of the cured EPI adhesive films during isothermal condition were carried out by dynamic mechanical analysis and positron annihilation lifetime spectroscopy, respectively. It is the first time to explore the creep response and physical aging of the EPI film, as well as associated microstructural evolution.
View Article and Find Full Text PDFPolymers (Basel)
September 2019
To predict the cyclic stability of secondary battery electrodes, the mechanical behaviors of polymer binders and conductive composites (BCC) is of great significance. In terms of uniaxial tension, tensile stress relaxation, and bonding strength tests, the present study encompasses a systematic investigation of the mechanical properties of two typical aqueous binders with different contents of Super-S carbon black (SS) under a liquid electrolyte. Meanwhile, the microstructure of cured film and the surface morphology of the bonding interface are investigated in detail.
View Article and Find Full Text PDFPolymers (Basel)
June 2018
Knowledge of the mechanical behaviors of polymer film in humid environments is of great significance for predicting the long-term performance of emulsion polymer isocyanate (EPI) as a high-performance wood adhesive. A tri-copolymer latex was cross-linked by the general polymeric methylene diisocyanate (-MDI) and aqueous emulsified isocyanate (EMDI) at different loadings for preparing EPI. Furthermore, a series of uniaxial tension tests under different relative humidity (RH) were carried out on cured EPI samples before and after post-curing treatment, and the corresponding chemical structure, as well as the microstructure of polymers, was investigated in detail.
View Article and Find Full Text PDFPolymers (Basel)
February 2019
A coupled diffusion model based on continuum thermodynamics is developed to quantitatively describe the transport properties of glassy thin films during physical aging. The coupled field equations are then embodied and applied to simulate the transport behaviors of O₂ and CO₂ within aging polymeric membranes to validate the model and demonstrate the coupling phenomenon, respectively. It is found that due to the introduction of the concentration gradient, the proposed direct calculating method on permeability can produce relatively better consistency with the experimental results for various film thicknesses.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2015
One of the critical challenges in advancing lithium ion battery performance is increasing mechanical stability of the solid electrolyte interphase (SEI) layers. Our work aims at developing a mathematical model to study the lithium ion concentration and stress in the SEI on the graphite anode. The main influence factors on the SEI stress have been thoroughly investigated.
View Article and Find Full Text PDF