The collaboration of Yale, the University of California, Davis, and United Imaging Healthcare has successfully developed the NeuroEXPLORER, a dedicated human brain PET imager with high spatial resolution, high sensitivity, and a built-in 3-dimensional camera for markerless continuous motion tracking. It has high depth-of-interaction and time-of-flight resolutions, along with a 52.4-cm transverse field of view (FOV) and an extended axial FOV (49.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
April 2016
One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels.
View Article and Find Full Text PDFPhys Med Biol
July 2014
We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV).
View Article and Find Full Text PDFIn this study, we developed a prototype animal PET by applying several novel technologies to use solid-state photomultiplier (SSPM) arrays to measure the depth of interaction (DOI) and improve imaging performance. Each PET detector has an 8 × 8 array of about 1.9 × 1.
View Article and Find Full Text PDFIEEE Trans Nucl Sci
December 2011
An eight-channel readout ASIC has been developed for reading output signals from solid-state photomultipliers for positron emission tomography applications. This ASIC converts both the signal charge and occurring time to digital timing pulses so that only a time-to-digital converter is required for further signal processing. This provides the advantages of simplified circuit design, reduced power consumption, and suitability for applications that have a large number of readout channels.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
June 2011
A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted.
View Article and Find Full Text PDF