The collaboration of Yale, the University of California, Davis, and United Imaging Healthcare has successfully developed the NeuroEXPLORER, a dedicated human brain PET imager with high spatial resolution, high sensitivity, and a built-in 3-dimensional camera for markerless continuous motion tracking. It has high depth-of-interaction and time-of-flight resolutions, along with a 52.4-cm transverse field of view (FOV) and an extended axial FOV (49.
View Article and Find Full Text PDFPurpose: The positron range and prompt gamma emission are distinctive with different positron emitters. The performance assessment of an integrated PET/MR scanner with these positron emitters is required for related applications, as the magnetic field interferes with the positron propagation. Such an assessment is to be performed on the United Imaging uPMR 790-integrated PET/MR system.
View Article and Find Full Text PDFPhys Med Biol
October 2021
Absolute quantification of regional tissue concentration of radioactivity in positron emission tomography (PET) is a critical parameter-of-interest across various clinical and research applications and is affected by a complex interplay of factors including scanner calibration, data corrections, and image reconstruction. The emergence of long axial field-of-view (FOV) PET systems widens the dynamic range accessible to PET and creates new opportunities in reducing scan time and radiation dose, delayed or low radioactivity imaging, as well as kinetic modeling of the entire human. However, these imaging regimes impose challenging conditions for accurate quantification due to constraints from image reconstruction, low count conditions, as well as large and rapidly changing radioactivity distribution across a large axial FOV.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2018