Eur J Nucl Med Mol Imaging
April 2025
Purpose: Dual-energy (DE) CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging. However, this increases radiation dose and may require a hardware upgrade due to the added second x-ray CT scan. The recently proposed PET-enabled DECT method allows dual-energy imaging using a conventional PET/CT scanner without the need to change scanner hardware or increase radiation exposure.
View Article and Find Full Text PDFThe collaboration of Yale, the University of California, Davis, and United Imaging Healthcare has successfully developed the NeuroEXPLORER, a dedicated human brain PET imager with high spatial resolution, high sensitivity, and a built-in 3-dimensional camera for markerless continuous motion tracking. It has high depth-of-interaction and time-of-flight resolutions, along with a 52.4-cm transverse field of view (FOV) and an extended axial FOV (49.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Dual-energy computed tomography (DECT) enables material decomposition for tissues and produces additional information for PET/CT imaging to potentially improve the characterization of diseases. PET-enabled DECT (PDECT) allows the generation of PET and DECT images simultaneously with a conventional PET/CT scanner without the need for a second x-ray CT scan. In PDECT, high-energy -ray CT (GCT) images at 511 keV are obtained from time-of-flight (TOF) PET data and are combined with the existing x-ray CT images to form DECT imaging.
View Article and Find Full Text PDFX-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan.
View Article and Find Full Text PDFThis study presents and evaluates a robust Monte Carlo-based scatter correction (SC) method for long axial field of view (FOV) and total-body positron emission tomography (PET) using the uEXPLORER total-body PET/CT scanner.Our algorithm utilizes the Monte Carlo (MC) tool SimSET to compute SC factors in between individual image reconstruction iterations within our in-house list-mode and time-of-flight-based image reconstruction framework. We also introduced a unique scatter scaling technique at the detector block-level for optimal estimation of the scatter contribution in each line of response.
View Article and Find Full Text PDFThe current generation of total-body positron emission tomography (PET) scanners offer significant sensitivity increase with an extended axial imaging extent. With the large volume of lutetium-based scintillation crystals that are used as detector elements in these scanners, there is an increased flux of background radiation originating from Lu decay in the crystals and higher sensitivity for detecting it. Combined with the ability of scanning the entire body in a single bed position, this allows more effective utilization of the lutetium background as a transmission source for estimating 511 keV attenuation coefficients.
View Article and Find Full Text PDFThis work assessed the relationship between image signal-to-noise ratio (SNR) and total-body noise-equivalent count rate (NECR)-for both non-time-of-flight (TOF) NECR and TOF-NECR-in a long uniform water cylinder and 14 healthy human subjects using the uEXPLORER total-body PET/CT scanner.A TOF-NEC expression was modified for list-mode PET data, and both the non-TOF NECR and TOF-NECR were compared using datasets from a long uniform water cylinder and 14 human subjects scanned up to 12 h after radiotracer injection.The TOF-NECR for the uniform water cylinder was found to be linearly proportional to the TOF-reconstructed image SNRin the range of radioactivity concentrations studied, but not for non-TOF NECR as indicated by the reducedvalue.
View Article and Find Full Text PDFTotal-body PET/CT allows simultaneous acquisition of all the body parts in a single bed position during the radiotracer uptake phase. Dynamic imaging protocols employing total-body PET could demonstrate findings that may not have been previously visualized or described using conventional PET/CT scanners. We examined the characteristics of blanching defects, areas of markedly reduced (partial defect) or absent (complete defect) radiotracer uptake seen at the skin/subcutaneous tissues opposite the bony prominences at pressure points.
View Article and Find Full Text PDFPhys Med Biol
October 2021
Absolute quantification of regional tissue concentration of radioactivity in positron emission tomography (PET) is a critical parameter-of-interest across various clinical and research applications and is affected by a complex interplay of factors including scanner calibration, data corrections, and image reconstruction. The emergence of long axial field-of-view (FOV) PET systems widens the dynamic range accessible to PET and creates new opportunities in reducing scan time and radiation dose, delayed or low radioactivity imaging, as well as kinetic modeling of the entire human. However, these imaging regimes impose challenging conditions for accurate quantification due to constraints from image reconstruction, low count conditions, as well as large and rapidly changing radioactivity distribution across a large axial FOV.
View Article and Find Full Text PDFThe world's first total-body PET scanner with an axial field of view (AFOV) of 194 cm is now in clinical and research use at our institution. The uEXPLORER PET/CT system is the first commercially available total-body PET scanner. Here we present a detailed physical characterization of this scanner based on National Electrical Manufacturers Association (NEMA) NU 2-2018 along with a new set of measurements devised to appropriately characterize the total-body AFOV.
View Article and Find Full Text PDFCoincidence processing in positron emission tomography (PET) is typically done during acquisition of the data. However, on the EXPLORER total-body PET scanner we plan, in addition, to store unpaired single events (i.e.
View Article and Find Full Text PDF