Publications by authors named "Xin-Xin Zeng"

Background: Mesenchymal stem cells (MSCs) hold potential as therapeutic agents in cancer, but their mechanisms in lung adenocarcinoma (LUAD) remain poorly understood. This study aimed to identify biomarkers associated with MSC proliferation and differentiation (MSCPD) and investigate their regulatory roles in LUAD.

Methods: Using the TCGA-LUAD and GSE72094 datasets, MSCPD-related gene (MSCPD-RG) scores were calculated, and samples were divided into high and low subgroups.

View Article and Find Full Text PDF

Taste disorders in patients with type 2 diabetes mellitus (T2DM) have a negative impact on their quality of life and glycemic control, and treatment options are limited. Buzhong yiqi formula (BZYQF) improves T2DM symptoms but its effects on T2DM-induced taste disorders have not been sufficiently studied. : Molecular docking was utilized to evaluate binding activity between the compounds in BZYQF and the sweet taste receptors (STRs).

View Article and Find Full Text PDF

: BuZhong Yiqi Formula (BZYQF) has significant ameliorative effects on type 2 diabetes mellitus (T2DM). However, its efficacy in alleviating the hyposalivation caused by T2DM needs to be confirmed, and its mechanism is unclear. : Network pharmacology and molecular docking were combined to analyze the molecular mechanism by which BZYQF alleviates T2DM-caused hyposalivation.

View Article and Find Full Text PDF

BuZhong YiQi Formula (BZYQF) can alleviate type 2 diabetes mellitus (T2DM). However, its efficacy in managing postprandial hyperglycemia in T2DM needs to be further confirmed, and its underlying mechanism and pharmacodynamic material basis have not been sufficiently investigated. A T2DM rat model was induced to measure postprandial glycemic responses following glucose and starch ingestion.

View Article and Find Full Text PDF
Article Synopsis
  • Epstein-Barr virus (EBV) infection is linked to various cancers, but the role of EB nuclear antigen 1 binding protein 2 (EBNA1BP2) in tumors is not well understood, prompting an investigation into its potential as a prognostic biomarker across multiple cancer types.
  • Utilizing extensive bioinformatics analyses on data from TCGA and GEO databases, the study assessed EBNA1BP2's expression, prognostic significance, immune infiltration, and methylation levels in pan-cancer.
  • Results indicated that higher EBNA1BP2 expression is seen in tumor tissues, with lower levels correlating to better survival rates in specific cancers; it also plays roles in cell cycle regulation, DNA repair, and immune cell
View Article and Find Full Text PDF

Purpose: This study aimed to investigate the prognostic value of alpha-fetoprotein (AFP) ratio in patients with AFP-negative hepatocellular carcinoma (HCC).

Patients And Methods: We retrospectively analyzed 600 AFP-negative HCC patients who underwent hepatectomy. The AFP ratio was calculated as the ratio of AFP level 1 week before surgery to the level 20-40 days after hepatectomy.

View Article and Find Full Text PDF

Background: Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma (NHL). REGγ is important for tumor occurrence and development, but understanding of the specific role of REGγ in MCL is lacking. We aimed to identify REGγ effects on the proliferation and apoptosis of MCL cells and clarify the underlying mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • * Findings show that higher levels of maternal veterinary antibiotics, especially florfenicol and ciprofloxacin, are linked to reduced birth weight and overall growth parameters in newborns.
  • * Although these negative effects appear to lessen as children grow older, the researchers suggest that further studies are needed to confirm that early-life exposure to antibiotics, even in low amounts, can lead to growth restrictions in fetuses.
View Article and Find Full Text PDF

Saul-Wilson syndrome (SWS) is a rare, skeletal dysplasia with progeroid appearance and primordial dwarfism. It is caused by a heterozygous, dominant variant (p.G516R) in COG4, a subunit of the conserved oligomeric Golgi (COG) complex involved in intracellular vesicular transport.

View Article and Find Full Text PDF

Arterial remodeling is a major pathological consequence of hypertension, which is recognized as the most common chronic non-communicable disease. However, the detailed mechanism of how arterial remodeling is induced by hypertension has not yet been fully elucidated. Evaluating the transcriptional changes in arterial tissue in response to elevated blood pressure at an early stage may provide new insights and identify novel therapeutic candidates in preventing arterial remodeling.

View Article and Find Full Text PDF

Congenital heart diseases (CHDs), including hypoplastic left heart syndrome (HLHS), are genetically complex and poorly understood. Here, a multidisciplinary platform was established to functionally evaluate novel CHD gene candidates, based on whole-genome and iPSC RNA sequencing of a HLHS family-trio. Filtering for rare variants and altered expression in proband iPSCs prioritized 10 candidates.

View Article and Find Full Text PDF

Airway remodeling is the main characteristic of asthma; however, the mechanisms underlying this pathophysiological change have not been fully elucidated. Previous studies have indicated that the Wnt/β-catenin and mitogen-activated protein kinase (MAPK) signaling pathway are involved in the development of airway remodeling during asthma. Therefore, the present study established an airway remodeling rat model, after which β-catenin, cyclin D1 and c-Myc protein expressions were analyzed via western blotting in the lung tissue and airway smooth muscle cells (ASMCs) of rats.

View Article and Find Full Text PDF

Pacemaker cardiomyocytes that create the sinoatrial node are essential for the initiation and maintenance of proper heart rhythm. However, illuminating developmental cues that direct their differentiation has remained particularly challenging due to the unclear cellular origins of these specialized cardiomyocytes. By discovering the origins of pacemaker cardiomyocytes, we reveal an evolutionarily conserved Wnt signaling mechanism that coordinates gene regulatory changes directing mesoderm cell fate decisions, which lead to the differentiation of pacemaker cardiomyocytes.

View Article and Find Full Text PDF

Liver duct paucity is characteristic of children born with Alagille Syndrome (ALGS), a disease associated with JAGGED1 mutations. Here, we report that zebrafish embryos with compound homozygous mutations in two Notch ligand genes, jagged1b (jag1b) and jagged2b (jag2b) exhibit a complete loss of canonical Notch activity and duct cells within the liver and exocrine pancreas, whereas hepatocyte and acinar pancreas development is not affected. Further, animal chimera studies demonstrate that wild-type endoderm cells within the liver and pancreas can rescue Notch activity and duct lineage specification in adjacent cells lacking jag1b and jag2b expression.

View Article and Find Full Text PDF

Atrial and ventricular cardiac chambers behave as distinct subunits with unique morphological, electrophysiological and contractile properties. Despite the importance of chamber-specific features, chamber fate assignments remain relatively plastic, even after differentiation is underway. In zebrafish, Nkx transcription factors are essential for the maintenance of ventricular characteristics, but the signaling pathways that operate upstream of Nkx factors in this context are not well understood.

View Article and Find Full Text PDF

Heart assembly requires input from two populations of progenitor cells, the first and second heart fields (FHF and SHF), that differentiate at distinct times and create different cardiac components. The cardiac outflow tract (OFT) is built through recruitment of late-differentiating, SHF-derived cardiomyocytes to the arterial pole of the heart. The mechanisms responsible for selection of an appropriate number of OFT cells from the SHF remain unclear.

View Article and Find Full Text PDF

TBX20 has been shown to be essential for vertebrate heart development. Mutations within the TBX20 coding region are associated with human congenital heart disease, and the loss of Tbx20 in a wide variety of model systems leads to cardiac defects and eventually heart failure. Despite the crucial role of TBX20 in a range of cardiac cellular processes, the signal transduction pathways that act upstream of Tbx20 remain unknown.

View Article and Find Full Text PDF

Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid and choline. Studies in cultured cells and Drosophila melanogaster have implicated PLD in the regulation of many cellular functions, including intracellular vesicle trafficking, cell proliferation and differentiation. However, the function of PLD in vertebrate development has not been explored.

View Article and Find Full Text PDF

The vertebrate heart arises during gastrulation as cardiac precursors converge from the lateral plate mesoderm territories toward the embryonic midline and extend rostrally to form bilateral heart fields. G protein-coupled receptors (GPCRs) mediate functions of the nervous and immune systems; however, their roles in gastrulation remain largely unexplored. Here, we show that the zebrafish homologs of the Agtrl1b receptor and its ligand, Apelin, implicated in physiology and angiogenesis, control heart field formation.

View Article and Find Full Text PDF