Angew Chem Int Ed Engl
August 2025
Catalytic hydrogen-deuterium exchange (HDE) has emerged as a valuable tool for achieving site-selective deuteration and the precision labeling of bioactive molecules. Incorporation of deuterium at metabolically labile positions, enabled by such methods, can potentially improve drug efficacy through the kinetic isotope effect. However, achieving precise, site-selective incorporation of deuterium at specific molecular positions remains challenging.
View Article and Find Full Text PDFThe formation of one unavoidable byproduct in traditional disproportionation reactions limits their applications in synthesis. Inspired by convergent disproportionation, we develop an iodine-induced cyclization and oxidation of allylic alcohols to produce highly functionalized bicyclo[3.2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
Skeletal reorganization reactions have emerged as an intriguing tool for converting readily available compounds into complicated molecules inaccessible by traditional methods. Herein, we report a unique skeleton-reorganizing coupling reaction of cycloheptatriene and cycloalkenones with amines. In the presence of Rh/acid catalysis, cycloheptatriene can selectively couple with anilines to deliver fused 1,2-dihydroquinoline products.
View Article and Find Full Text PDFBy complementing traditional transition metal catalysis, photoinduced catalysis has emerged as a versatile and sustainable way to achieve carbon-heteroatom bond formation. This work discloses a visible-light-induced reaction for the formation of a C-S bond from aryl halides and inorganic sulfuration agents via electron donor-acceptor (EDA) complex photocatalysis. Divergent formations of organic sulfide and disulfide have been demonstrated under mild conditions.
View Article and Find Full Text PDFMetallocenes are privileged backbones for synthesis and catalysis. However, the direct dehydrogenative C-H functionalization of unsymmetric metallocenes suffers from reactivity and selectivity issues. Herein, we report an electrochemically driven regioselective C-H phosphorylation of group 8 metallocenes.
View Article and Find Full Text PDFThe recent surge in the applications of deuterated drug candidates has rendered an urgent need for diverse deuterium labeling techniques. Herein, an efficient Rh-catalyzed deuterated Tsuji-Wilkinson decarbonylation of naturally available aldehydes with DO is developed. In this reaction, DO not only acts as a deuterated reagent and solvent but also promotes Rh-catalyzed decarbonylation.
View Article and Find Full Text PDFThe Mizoroki-Heck reaction and its reductive analogue are staples of organic synthesis, but the ensuing products often lack a chemical handle for further transformation. Here we report an atom-economical cross-coupling of halopyridines and unactivated alkenes under photoredox catalysis to afford a series of alkene halopyridylation products. This protocol with mild and redox neutral conditions contributes broad substrate scope.
View Article and Find Full Text PDFRitter reaction has been recognized as an elegant strategy to construct the C-N bond. Its key feature is forming the carbocation for nucleophilic attack by nitriles. Herein, we report a complementary visible-light-induced three-component Ritter reaction of alkenes, nitriles, and -bromo nitriles/esters, thereby providing mild and rapid access to various -amino nitriles/acids.
View Article and Find Full Text PDFDepending on the reactant property and reaction mechanism, one major regioisomer can be favored in a reaction that involves multiple active sites. Herein, an orthogonal regulation of nucleophilic and electrophilic sites in the regiodivergent hydroamination of isoprene with indazoles is demonstrated. Under Pd-hydride catalysis, the 1,2- or 4,3-insertion pathway with respect to the electrophilic sites on isoprene could be controlled by the choice of ligands.
View Article and Find Full Text PDFOrg Biomol Chem
December 2020
A distinct copper-catalyzed boroacylation of allenes with acyl chlorides and bis(pinacolato)diboron is developed. For aromatic acyl chlorides, 1,2-boroacylation of allenes readily takes place, leading to the formation of tetrasubstituted vinylboronates with exclusive (E)-stereoselectivity. In comparison, the employment of alkyl acyl chlorides as electrophiles alters the selectivity to 2,3-boroacylated products.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2021
Transition metal catalyzed decarbonylation offers a distinct synthetic strategy for new chemical bond formation. However, the π-backbonding between CO π* orbitals and metal center d-orbitals impedes ligand dissociation to regenerate the catalyst under mild reaction conditions. Developed here is visible light induced rhodium catalysis for decarbonylative coupling of imides with alkynes under ambient conditions.
View Article and Find Full Text PDFChem Commun (Camb)
July 2020
A rhodium-catalyzed asymmetric allylic alkylation of pyrazol-5-ones with internal alkynes is illustrated. In the presence of a chiral rhodium-hydride catalyst, functionalized heterocyclic products bearing an all-carbon quaternary stereogenic center were obtained in high yields with satisfactory enantioselectivities. This protocol also features good regiocontrol and a high atom economy without stoichiometric by-product formation.
View Article and Find Full Text PDFThrough the oxidative addition of cobalt into the N-C(O) bond of phthalimide and the subsequent decarbonylation, we describe an efficient cobalt-catalyzed intermolecular decarbonylative carboamidation of alkynes. High regioselectivities have been achieved for unsymmetrical alkynes (including aryl-alkyl or aryl-aryl) to deliver polysubstituted isoquinolones. To facilitate step economy, a three-component decarbonylative carboamidation of alkynes with phthalic anhydrides and amines has been demonstrated using the current cobalt catalysis.
View Article and Find Full Text PDFChem Sci
November 2019
Terpenes, consisting of isoprene monomer units, represent a family of naturally abundant compounds. The difunctionalization of terpenes is highly appealing yet remains challenging, since the multiple unbiased C[double bond, length as m-dash]C bonds of terpenes lead to difficulty in controlling the regioselectivity. Herein, a cobalt(iii)-catalyzed C-H activation strategy has been developed to facilitate hydroxymethylarylation of terpenes with formaldehyde and arenes with high chemo- and regio-selectivities.
View Article and Find Full Text PDFChem Commun (Camb)
February 2020
A ruthenium-catalyzed allylic C(sp3)-H activation strategy has been employed to develop an intermolecular coupling of alkenyl sulfonamides with alkynes. This protocol features the diastereoselective construction of [3.3.
View Article and Find Full Text PDF