Publications by authors named "Xi-Biao He"

Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons.

View Article and Find Full Text PDF

Midbrain dopamine (DA) neurons are associated with locomotor and psychiatric disorders. DA phenotype is specified in ancestral neural precursor cells (NPCs) and maintained throughout neuronal differentiation. Here we show that endogenous expression of MeCP2 coincides with DA phenotype specification in mouse mesencephalon, and premature expression of MeCP2 prevents in vitro cultured NPCs from acquiring DA phenotype through interfering NURR1 transactivation of DA phenotype genes.

View Article and Find Full Text PDF

The close association between astrocytes and microglia causes great difficulties to distinguish their individual roles in innate immune responses in central nervous system. Current chemical-based methods to eliminate microglia in glial cell culture introduce various molecular and functional alterations to astrocytes. Here, we describe a novel two-step approach to achieve a complete elimination of microglia without affecting the biological properties of co-cultured astrocytes by temporal treatment of histone deacetylase inhibitor trichostatin A (TSA).

View Article and Find Full Text PDF

Heart is a multi-cellular organ made up of various cell types interacting with each other. Cardiomyocytes may benefit or suffer from crosstalk with noncardiomyocytes in response to diverse kinds of cardiac stresses. Proteasome dysfunction is a common cardiac stress which causes cardiac proteotoxicity and contributes to cardiac diseases such as heart failure and myocardial infarction.

View Article and Find Full Text PDF

Background: Flavonoid monomers are proved to have an anti-inflammatory effect and may also be promising for chronic pain treatment. In the present study, the analgesic effect and the relevant mechanisms of luteoloside, one of the flavonoid monomers, were investigated.

Methods: The analgesic effect of luteoloside was first evaluated in complete Freud's adjuvant induced inflammatory model by von Frey test and Hargreaves test in both male and female mice.

View Article and Find Full Text PDF

Previous studies have reported that vitamin C (VC) promotes neural stem/precursor cell (NSC) differentiation toward dopamine (DA) neurons via DNA hydroxymethylation-induced transcriptional activation of DA neuron-specific genes. To further understand the VC effects on NSC differentiation, we profiled the transcriptome and DNA methylome/hydroxymethylome using high-throughput sequencing. Interestingly, RNA sequencing analyses have shown that, in addition to DA neuronal genes, astrocytic genes Gfap, Slc1a3, and S100a16 were also upregulated in NSC cultures differentiated with VC treatment.

View Article and Find Full Text PDF

Aims: Remote ischemic conditionings, such as pre- and per-conditioning, are known to provide cardioprotection in animal models of ischemia. However, little is known about the neuroprotection effect of postconditioning after cerebral ischemia. In this study, we aim to evaluate the motor function rescuing effect of remote limb ischemic postconditioning (RIPostC) in a rat model of acute cerebral stroke.

View Article and Find Full Text PDF

Autophagy and the ubiquitin proteasome system (UPS), as two major protein degradation pathways, coordinate with each other in regulating programmed cell death. Autophagy can compensate for the UPS impairment-induced cell dysfunction and apoptosis. However, it is not clear how cells maintain the delicate balance between UPS-related apoptosis and autophagy.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of dementia in those over the age of 65. While a numerous of disease-causing genes and risk factors have been identified, the exact etiological mechanisms of AD are not yet completely understood, due to the inability to test theoretical hypotheses on non-postmortem and patient-specific research systems. The use of recently developed and optimized induced pluripotent stem cells (iPSCs) technology may provide a promising platform to create reliable models, not only for better understanding the etiopathological process of AD, but also for efficient anti-AD drugs screening.

View Article and Find Full Text PDF

Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell cultures derived from embryonic midbrains greatly enhanced differentiation toward midbrain-type dopamine (mDA) neurons, the neuronal subtype associated with Parkinson's disease.

View Article and Find Full Text PDF

Understanding how dopamine (DA) phenotypes are acquired in midbrain DA (mDA) neuron development is important for bioassays and cell replacement therapy for mDA neuron-associated disorders. Here, we demonstrate a feed-forward mechanism of mDA neuron development involving Nurr1 and Foxa2. Nurr1 acts as a transcription factor for DA phenotype gene expression.

View Article and Find Full Text PDF

Understanding midbrain dopamine (DA) neuron differentiation is of importance, because of physiological and clinical implications of this neuronal subtype. We show that prolonged membrane depolarization induced by KCl treatment promotes DA neuron differentiation from neural precursor cells (NPCs) derived from embryonic ventral midbrain (VM). Interestingly, the depolarization-induced increase of DA neuron yields was not abolished by L-type calcium channel blockers, along with no depolarization-mediated change of intracellular calcium level in the VM-derived NPCs (VM-NPCs), suggesting that the depolarization effect is due to a calcium-independent mechanism.

View Article and Find Full Text PDF