J Am Chem Soc
April 2025
Properties of the historically pivotal fulminic acid (HCNO) molecule have been computed with a panoply of 473 density functionals of all varieties, providing a snapshot of the performance of contemporary density functional theory (DFT) for a challenging chemical system. Exhaustive tabulations and statistical analyses have been carried out for geometric parameters, vibrational frequencies, barriers to linearity, and the HCN-O dissociation energy. As the DFT ladder is climbed, confusion rather than consensus ensues regarding the details of the distinctive, extremely flat H-C-N bending potential of fulminic acid and whether the equilibrium structure is linear or bent.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2024
The concordant mode approach (CMA) is a promising new scheme for dramatically increasing the system size and level of theory achievable in quantum chemical computations of molecular vibrational frequencies. Here, we achieve advances in the CMA hierarchy by computations targeting CCSD(T)/cc-pVTZ (coupled cluster singles and doubles with perturbative triples using a correlation-consistent polarized-valence triple-ζ basis set) benchmarks within the G2 molecular test set, executing a statistical analysis for 1501 frequencies from 111 compounds and then separately solving the refractory case of pyridine. First, MP2/cc-pVTZ (second-order Møller-Plesset perturbation theory with the same basis set) proves to be an excellent and preferred choice for generating the underlying (Level B) normal modes of the CMA scheme.
View Article and Find Full Text PDFFulminic acid (HCNO) played a critical role in the early development of organic chemistry, and chemists have sought to discern the structure and characteristics of this molecule and its isomers for over 200 years. The mercurial nature of the extremely flat H-C-N bending potential of fulminic acid, with a nearly vanishing harmonic vibrational frequency at linearity, remains enigmatic and refractory to electronic structure theory, as dramatic variation with both orbital basis set and electron correlation method is witnessed. To solve this problem using rigorous electronic wavefunction methods, we have employed focal point analyses (FPA) to ascertain the limit of optimized linear and bent geometries, corresponding vibrational frequencies, and the HCN + O() → HCNO reaction energy.
View Article and Find Full Text PDFCorrection for 'Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance' by Pascal Vermeeren , , 2022, , 18028-18042, https://doi.org/10.1039/D2CP02234F.
View Article and Find Full Text PDFThe i-propyl + O2 reaction mechanism has been investigated by definitive quantum chemical methods to establish this system as a benchmark for the combustion of secondary alkyl radicals. Focal point analyses extrapolating to the ab initio limit were performed based on explicit computations with electron correlation treatments through coupled cluster single, double, triple, and quadruple excitations and basis sets up to cc-pV5Z. The rigorous coupled cluster single, double, and triple excitations/cc-pVTZ level of theory was used to fully optimize all reaction species and transition states, thus, removing some substantial flaws in reference geometries existing in the literature.
View Article and Find Full Text PDFThe Concordant Mode Approach (CMA) is advanced as a novel hierarchy for increasing the system size and level of theory feasible for quantum chemical computations of harmonic vibrational frequencies. The key concept behind CMA is that transferrable, internal-coordinate normal modes computed at an appropriate lower level of theory (B) comprise a superb basis for converging to vibrational frequencies given by a higher level of theory (A). Accordingly, high-level harmonic frequencies can be evaluated via CMA from a collection of single-point energies that essentially scales linearly in the number of atoms, providing nearly order-of-magnitude CPU time speedups.
View Article and Find Full Text PDFHierarchical, convergent benchmark computations were performed followed by a systematic analysis of DFT performance for five pericyclic reactions comprising Diels-Alder, 1,3-dipolar cycloaddition, electrocyclic rearrangement, sigmatropic rearrangement, and double group transfer prototypes. Focal point analyses (FPA) extrapolating to the limit were executed explicit quantum chemical computations with electron correlation treatments through CCSDT(Q) and correlation-consistent Gaussian basis sets up to aug'-cc-pV5Z. Optimized geometric structures and vibrational frequencies of all stationary points were obtained at the CCSD(T)/cc-pVTZ level of theory.
View Article and Find Full Text PDFJ Am Chem Soc
November 2020
We report the first preparation of the -,- conformer of dihydroxycarbene () by means of pyrolysis of oxalic acid, isolation of the lower-energy -,- () and -,- () product conformers at cryogenic temperatures in a N matrix, and subsequent narrow-band near-infrared (NIR) laser excitation to give . Carbene converts quickly to via quantum-mechanical tunneling with an effective half-life of 22 min at 3 K. The potential energy surface features around were pinpointed by convergent focal point analysis targeting the AE-CCSDT(Q)/CBS level of electronic structure theory.
View Article and Find Full Text PDFRadical-radical abstractions in hydrocarbon oxidation chemistry are disproportionation reactions that are generally exothermic with little or no barrier yet are underappreciated and poorly studied. Such challenging multireference electronic structure problems are tackled here using the recently developed state-specific multireference coupled cluster methods Mk-MRCCSD and Mk-MRCCSD(T), as well as the companion perturbation theory Mk-MRPT2 and the established MRCISD, MRCISD+Q, and CASPT2 approaches. Reaction paths are investigated for five prototypes involving radical-radical hydrogen abstraction: H + BeH → H+ Be, H + NH → H + NH, CH + CH → CH + CH, H + CH → H + CH, and H + HCO → H + CO.
View Article and Find Full Text PDFAll reduced Wigner rotation matrix elements d (θ) can be evaluated very efficiently as a linear combination of either cos(Nθ) or sin(Nθ) terms as N runs in unit steps from either 0 or 12 to J. Exact, infinite-precision formulas are derived here for the Fourier coefficients in these d (θ) expressions by finding remarkable analytic solutions for the normalized eigenvectors of arbitrarily large matrices that represent the Ĵ angular momentum operator in the basis of Ĵ eigenstates. The solutions involve collections of numbers W for (m, n) = (J-M, J-N) ∈ [0, 2J] that satisfy the recursion relation (m+1)W -2(J-n)W +(2J-m+1)W =0.
View Article and Find Full Text PDFThe hydridotrioxygen (HO) radical has been investigated in many previous theoretical and experimental studies over several decades, originally because of its possible relevance to the tropospheric HO cycle but more recently because of its fascinating chemical bonding, geometric structure, and vibrational dynamics. We have executed new, comprehensive research on this vexing molecule via focal point analyses (FPA) to approach the ab initio limit of optimized geometric structures, relative energies, complete quartic force fields, and the entire reaction path for cis-trans isomerization. High-order coupled cluster theory was applied through the CCSDT(Q) and even CCSDTQ(P) levels, and CBS extrapolations were performed using cc-pVXZ (X = 2-6) basis sets.
View Article and Find Full Text PDFThe long-known, ubiquitously present, and always attractive London dispersion (LD) interaction was probed with hexaphenylethane (HPE) derivatives. A series of all- meta hydrocarbyl [Me, Pr, Bu, Cy, Ph, 1-adamantyl (Ad)]-substituted triphenylmethyl (TPM) derivatives [TPM-H, TPM-OH, (TPM-O), TPM] was synthesized en route, and several derivatives were characterized by single-crystal X-ray diffraction (SC-XRD). Multiple dimeric head-to-head SC-XRD structures feature an excellent geometric fit between the meta-substituents; this is particularly true for the sterically most demanding Bu and Ad substituents.
View Article and Find Full Text PDFIron-capped, linear-carbon-chain dications have been investigated at the M06L/DZP level of quantum chemistry in order to determine their structural and electronic properties, focusing on differences between chains containing odd and even numbers of carbon atoms. Such differences result from changes in the electronic states and the acetylenic or cumulenic nature of the carbon chain. Interestingly, the short even-carbon chains exhibit distinct properties, but upon chain lengthening undergo a transition to structures similar to those of odd-carbon chains, with a turning point around [FeC10Fe]2+.
View Article and Find Full Text PDFThe potential energy surfaces for the S 2 reactions of allyl and propyl chlorides with 21 anionic and neutral nucleophiles was studied by using ωB97X-D/6-311++G(3df,2pd) computations. The "allylic effect" on S 2 barriers was observed for all reactions, and compared with propyl substrates, the energy barriers differed by -0.2 to -4.
View Article and Find Full Text PDFThe overarching analytic integrated rate equation for the chemical kinetics of any reversible or irreversible reaction involving an arbitrary number of species and any integral orders is shown to be Π [1 - f ξ( t)] = e, where ξ( t) is the extent of reaction variable, the f are roots of a polynomial of order r, the exponents are determined by γ = Π ( f - f ), and F is a factor involving the stoichiometric coefficients and rate constants ( k). All integrated rate equations of elementary reactions appearing in chemical kinetics are special cases of this universal solution. Not only does the solution provide insight into the analytical form of the exponents γ and F that govern the time evolution of the system, but it also provides an elegant framework for the pedagogy and application of kinetics in physical chemistry.
View Article and Find Full Text PDFDisentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material.
View Article and Find Full Text PDFGeometric energy derivatives which rely on core-corrected focal-point energies extrapolated to the complete basis set (CBS) limit of coupled cluster theory with iterative and noniterative quadruple excitations, CCSDTQ and CCSDT(Q), are used as elements of molecular gradients and, in the case of CCSDT(Q), expansion coefficients of an anharmonic force field. These gradients are used to determine the CCSDTQ/CBS and CCSDT(Q)/CBS equilibrium structure of the S ground state of HCO where excellent agreement is observed with previous work and experimentally derived results. A fourth-order expansion about this CCSDT(Q)/CBS reference geometry using the same level of theory produces an exceptional level of agreement to spectroscopically observed vibrational band origins with a MAE of 0.
View Article and Find Full Text PDFJ Chem Theory Comput
April 2017
While ring-walking is a critical step in transition metal catalyzed cross-coupling reactions, the associated metastable intermediates are often difficult to isolate and characterize. In this work, theoretical structures and energetics for ring-walking and oxidative addition of zerovalent nickel with 1-bromo-2-methylbenzene, 2-bromopyridine, 2-bromo-3-methyl-thiophene, and 2-bromopyrrole were computed at the B3LYP-D3/TZ2P-LANL2TZ(f)-LANL08d level. The mechanisms vary qualitatively with substrate ring size and type-the catalyst weaves along the edges of the benzene and pyridine rings, cuts through the interior of the thiophene ring, and arcs along the bond opposite the nitrogen atom in the pyrrole ring.
View Article and Find Full Text PDFThe myriad conformers of the neutral form of natural amino acid serine (Ser) have been investigated by systematic computations with reliable electronic wave function methods. A total of 85 unique conformers were located using the MP2/cc-pVTZ level of theory. The 12 lowest-energy conformers of serine fall within a 8 kJ mol(-1) window, and for these species, geometric structures, precise relative energies, equilibrium and vibrationally averaged rotational constants, anharmonic vibrational frequencies, infrared intensities, quartic and sextic centrifugal distortion constants, dipole moments, and (14)N nuclear quadrupole coupling constants were computed.
View Article and Find Full Text PDFChem Commun (Camb)
June 2016
The cis,trans-conformer of carbonic acid (H2CO3), generated by near-infrared radiation, undergoes an unreported quantum mechanical tunnelling rotamerization with half-lives in cryogenic matrices of 4-20 h, depending on temperature and host material. First-principles quantum chemistry at high levels of theory gives a tunnelling half-life of about 1 h, quite near those measured for the fastest rotamerizations.
View Article and Find Full Text PDFInfrared spectroscopy and formation dynamics of triacetylene are investigated in a slit jet supersonic discharge and probed with sub-Doppler resolution (≈60 MHz) on the fundamental antisymmetric CH stretch mode (ν5). The triacetylene is generated in the throat of the discharge by sequential attack of ethynyl radical with acetyelene and diacetylene: (i) HCCH → HCC + H, (ii) HCC + HCCH → HCCCCH + H, (iii) HCC + HCCCCH → HCCCCCCH + H, cooled rapidly in the slit expansion to 15 K, and probed by near shot-noise-limited absorption sensitivity with a tunable difference-frequency infrared laser. The combination of jet cooled temperatures (Trot = 15 K) and low spectral congestion permits (i) analysis of rotationally avoided crossings in the ν5 band ascribed to Coriolis interactions, as well as (ii) first detection of ν5 Π-Π hot band progressions built on the ν12 sym CC bend and definitively assigned via state-of-the-art ab initio vibration-rotation interaction parameters (αi), which make for interesting comparison with recent spectroscopic studies of Doney et al.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2016
The network of H2 additions to B(+) and subsequent insertion reactions serve as a tractable model for hydrogen storage in elementary boron-containing compounds. Here, they are investigated using state-of-the-art ab initio methods (up to CCSDTQ and cc-pCV6Z basis sets). The binding energies of H2 to HBH(+) (14.
View Article and Find Full Text PDFJ Am Chem Soc
June 2015
Six electronic states (X (4)Σ(-), A (4)Π, B (4)Δ, (2)Φ, (2)Δ, (2)Σ(+)) of the vanadium monochloride cation (VCl(+)) are described using large basis set coupled cluster theory. For the two lowest quartet states (X (4)Σ(-) and A (4)Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, D¯e, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling.
View Article and Find Full Text PDF