Publications by authors named "Weicheng Cao"

This Perspective summarizes the current state of the art in understanding the local environments of metal sites across homogeneous and heterogeneous catalysts by means of solid-state nuclear magnetic resonance (NMR), augmented with first-principles density functional theory (DFT) calculations, focusing on transition-metal nuclei and emphasizing the potential of this approach for understanding reactivity. We illustrate in particular how NMR parameters of transition-metal nuclei provide unique insights into the electronic structures and coordination environments of metal sites, complementary to information that can be obtained from C, N, or O NMR parameters of metal-bound ligands. Using the examples of solid-state NMR analyses of supported and molecular systems containing NMR-active transition-metal nuclei (Mo, Pt, Ag, W, V, and Ti), we show how NMR parameters can be determined and related to structural and electronic features of molecular and surface metal sites.

View Article and Find Full Text PDF

Eutrophication has received worldwide attention, and bioremediation is progressive research of lake control. In a five-month cultivation study, we aim to reduce various forms of nitrogen and phosphorus in the water-sediment system of eutrophic lakes amended with biochar/Effective Microorganisms (EMs) combined with different means. Self-organizing maps revealed that in the absence of exogenous contamination, the nitrogen and phosphorus levels in the water-sediment systems were greatly driven by the temporal variation in cultivation, followed by the depth of the water-sediment system and different amendments.

View Article and Find Full Text PDF

Hydrogenation of CO to methanol is foreseen as a key step to close the carbon cycle. In this study, we show that introducing Ga into silica-supported nanoparticles based on group 8-9 transition noble metals (M = Ru, Os, Rh, and Ir - Ga@SiO) switches their reactivity from producing mostly methane (sel. > 97%) to producing methanol (>50% CHOH/DME sel.

View Article and Find Full Text PDF

Graphitic carbon nitride (g-CN) has gained significant attention for its catalytic properties, especially in the development of Single Atom Catalysts (SACs). However, the surface chemistry underlying the formation of these isolated metal sites remains poorly understood. In this study we employ Surface OrganoMetallic Chemistry (SOMC) together with advanced microscopic and spectroscopic techniques for an in-depth analysis of functionalized g-CN materials, where tailored organosilver probe molecules are used to monitor surface processes and characterize resulting surface species.

View Article and Find Full Text PDF

Lots of studies on eutrophication, but there is a lack of comprehensive research on the repair of multiple forms of nitrogen and phosphorus under combined heavy metals (HMs) pollution. This work investigated the various forms of nitrogen and phosphorus in the water-sediment systems of eutrophic lakes with the application of biochar, Effective Microorganisms (EMs) and microplastics, aiming to deliberate the repair behavior of multiple forms of nitrogen/phosphorus and the integrated repairment of these nutrients and HMs in different remediations. For amended-groups, the application of biochar-supported EMs (BE) achieved the most desirable remediation for removing nitrogen, phosphorus and HMs in water and improved their stability in sediment due to the improved microbial activity and the developed biofilm system created by biochar.

View Article and Find Full Text PDF

China's lakes are plagued by cadmium (Cd) pollution. Dissolved organic matter (DOM) significantly regulates Cd(II) transport properties at the sediment-water interface. Understanding the effects of different DOM components on the transportation properties of Cd(II) at the sediment-water interface is essential.

View Article and Find Full Text PDF

DOM (dissolved organic matter) play a crucial role in lakes' geochemical and carbon cycles. Eutrophication evolution would influence nutrient status of waters and investigating the DOM variation helps a better understanding of bioremediation on environmental behavior of DOM in eutrophic lakes. In our study, the contents, compositions and characteristics of systematic DOM&SOM (sediment organic matter) were greatly influenced by seasonal changes.

View Article and Find Full Text PDF

N-heterocyclic carbenes (NHCs) have been extensively studied to modulate the reactivity of molecular catalysts, colloids, and their supported analogues, being isolated sites, clusters, or nanoparticles. While the interaction of NHCs on metal surfaces has been discussed in great detail, showing specific coordination chemistry depending on the type of NHC ligands, much less is known when the metal is dispersed on oxide supports, as in heterogeneous catalysts. Herein, we study the interaction of NHC ligands with Au surface sites dispersed on silica, a nonreducible oxide support.

View Article and Find Full Text PDF

Molecular-level understanding of the acid/base properties of heterogeneous catalysts requires the development of selective spectroscopic probes to establish structure-activity relationships. In this work we show that substituting the surface protons in oxide supports by isolobal N-heterocyclic carbene (NHC) Ag cations and measuring their Ag nuclear magnetic resonance (NMR) signatures enables to probe the speciation and to evaluate the corresponding Brønsted acidity of the substituted OH surface sites. Specifically, a series of silver N-heterocyclic carbene (NHC) Ag(i) complexes of general formula [(NHC)AgX] are synthesized and characterized, showing that the Ag NMR chemical shift of the series correlates with the Brønsted acidity of the conjugate acid of X (, HX), thus establishing an acidity scale based on Ag NMR chemical shift.

View Article and Find Full Text PDF

The presence of residual antibiotics in the environment is a prominent issue. Photodegradation behavior is an important way of antibiotics reduction, which is closely related to dissolved organic matter (DOM) in water. The review provides an overview of the latest advancements in the field.

View Article and Find Full Text PDF

In mineral-rich areas, eutrophic lakes are at risk of HMs pollution. However, few papers focused on the repair of HMs in eutrophic environment. Our study analyzed multiple forms of HMs, pore structure and microbial responses in the water-sediment system of eutrophic lake treated with biochar, Effective Microorganisms (EMs) or/and microplastics (MPs).

View Article and Find Full Text PDF

Converting colloidal nanocrystals (NCs) into devices for various applications is facilitated by designing and controlling their surface properties. One key strategy for tailoring surface properties is thus to choose tailored surface ligands. In that context, amines have been universally used, with the goal to improve NCs synthesis, processing and performances.

View Article and Find Full Text PDF

Carbon doping in GaN-on-Silicon (Si) epitaxial layers is an essential way to reduce leakage current and improve breakdown voltage. However, complicated occupy forms caused by carbon lead to hard analysis leakage/breakdown mechanisms of GaN-on-Si epitaxial layers. In this paper, we demonstrate the space charge distribution and intensity in GaN-on-Si epitaxial layers from 0 to 448 V by simulation.

View Article and Find Full Text PDF

Dye/salt separation in textile wastewater is of great importance. Membrane filtration technology is an environmentally friendly and effective approach to solve this issue. In this study, a thin-film composite membrane with a tannic acid (TA)-modified carboxylic multiwalled carbon nanotube (MWCNT) interlayer (M-TA) was prepared by interfacial polymerization with amino-functionalized graphene quantum dots (NGQDs) acting as aqueous monomers.

View Article and Find Full Text PDF

Selective oxidation of methane to methanol by dioxygen (O) is an appealing route for upgrading abundant methane resource and represents one of the most challenging reactions in chemistry due to the overwhelmingly higher reactivity of the product (methanol) versus the reactant (methane). Here, we report that gold nanoparticles dispersed on mordenite efficiently catalyze the selective oxidation of methane to methanol by molecular oxygen in aqueous medium in the presence of carbon monoxide. The methanol productivity reaches 1300 μmol g h or 280 mmol g h with 75% selectivity at 150 °C, outperforming most catalysts reported under comparable conditions.

View Article and Find Full Text PDF

For better sustainable resource recovery and elevating the separation efficiency of dye/salt mixture, it is essential to develop an appropriate nanofiltration membrane for the treatment of textile dyeing wastewater containing relatively smaller molecule dyes. In this work, a novel composite polyamide-polyester nanofiltration membrane was fabricated by tailoring amino functionalized quantum dots (NGQDs) and β-cyclodextrin (CD). An in-situ interfacial polymerization occurred between the synthesized NGQDs-CD and trimesoyl chloride (TMC) on the modified multi-carbon nanotubes (MWCNTs) substrate.

View Article and Find Full Text PDF

Crystalline materials are often considered to have rigid periodic lattices, while soft materials are associated with flexibility and nonperiodicity. The continuous evolution of metal-organic frameworks (MOFs) has erased the boundaries between these two distinct conceptions. Flexibility, disorder, and defects have been found to be abundant in MOF materials with imperfect crystallinity, and their intricate interplay is poorly understood because of the limited strategies for characterizing disordered structures.

View Article and Find Full Text PDF

Ligand exchange is fundamentally related to the surface chemistry of nanoparticles in solution and is also an essential procedure for their synthesis and solution processing. The solution of ligand-bearing nanoparticles can be regarded as a dynamic equilibrium of bound and free ligands depending on the concentration and temperature. The direct experimental calibration of the ligand exchange dynamics relies on the in situ and real-time quantification of bound and free ligands.

View Article and Find Full Text PDF

Pyrite and engineering carbon materials have received increasing attention for their catalytic potential in Fenton reactions due to their extensive sources and low cost. However, effects of carbon materials on the degradation of pollutants by pyrite-catalyzed heterogeneous Fenton oxidation have not been fully understood. In this study, the performance of pyrite-catalyzed heterogeneous Fenton system on the degradation of ciprofloxacin (CIP) was investigated in the presence of activated carbon (AC), biochar (BC), and carbon nanotubes (CNTs).

View Article and Find Full Text PDF

Carbon impurity as point defects makes key impact on the leakage in GaN-on-Si structures. GaN-based epitaxial layers with different point defects by changing carbon-doped concentration were used to investigate the point defects behavior. It was found that leakage mechanisms correspond with space-charge-limited current models at low voltages, and after 1st kink, electron injection from silicon to GaN and PF conduction play a key role in the leakage of both point defects case with low carbon and high carbon doped.

View Article and Find Full Text PDF

The defects in metal-organic frameworks (MOFs) can dramatically alter their pore structure and chemical properties. However, it has been a great challenge to characterize the molecular structure of defects, especially when the defects are distributed irregularly in the lattice. In this work, we applied a characterization strategy based on solid-state nuclear magnetic resonance (NMR) to assess the chemistry of defects.

View Article and Find Full Text PDF

Thin-film nanocomposite (TFN) membranes with efficient molecular separation and organic solvent resistance are active in demand in wastewater treatment and resource reclamation, meeting the goal of emission peaks and carbon neutrality. In this work, a simple and rational design strategy has been employed to construct a sandwich-structured membrane for removing fluoroquinolone antibiotics and recycling organic solvents. The sandwich-structured membrane is composed of a porous substrate, a hydrophilic tannic acid-polyethyleneimine (TA-PEI) interlayer, and a polyamide (PA) selective layer decorated with metal-organic framework (PA-MOF).

View Article and Find Full Text PDF

Gold (Au) nanoparticles supported on certain platforms display highly efficient activity on nitroaromatics reduction. In this study, steam-activated carbon black (SCB) was used as a platform to fabricate Au/SCB composites via a green and simple method for 4-nitrophenol (4-NP) reduction. The obtained Au/SCB composites exhibit efficient catalytic performance in reduction of 4-NP (rate constant k = 2.

View Article and Find Full Text PDF

The ability of microplastics (MPs) to interact with environmental pollutants is of great concern. Riverine sediments, as sinks for multi-pollutants, have been rarely studied for MPs risk evaluation. Meanwhile, MPs generated from biodegradable plastics are questioning the safety of the promising materials.

View Article and Find Full Text PDF