Dye/salt separation in textile wastewater is of great importance. Membrane filtration technology is an environmentally friendly and effective approach to solve this issue. In this study, a thin-film composite membrane with a tannic acid (TA)-modified carboxylic multiwalled carbon nanotube (MWCNT) interlayer (M-TA) was prepared by interfacial polymerization with amino-functionalized graphene quantum dots (NGQDs) acting as aqueous monomers.
View Article and Find Full Text PDFFor better sustainable resource recovery and elevating the separation efficiency of dye/salt mixture, it is essential to develop an appropriate nanofiltration membrane for the treatment of textile dyeing wastewater containing relatively smaller molecule dyes. In this work, a novel composite polyamide-polyester nanofiltration membrane was fabricated by tailoring amino functionalized quantum dots (NGQDs) and β-cyclodextrin (CD). An in-situ interfacial polymerization occurred between the synthesized NGQDs-CD and trimesoyl chloride (TMC) on the modified multi-carbon nanotubes (MWCNTs) substrate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Thin-film nanocomposite (TFN) membranes with efficient molecular separation and organic solvent resistance are active in demand in wastewater treatment and resource reclamation, meeting the goal of emission peaks and carbon neutrality. In this work, a simple and rational design strategy has been employed to construct a sandwich-structured membrane for removing fluoroquinolone antibiotics and recycling organic solvents. The sandwich-structured membrane is composed of a porous substrate, a hydrophilic tannic acid-polyethyleneimine (TA-PEI) interlayer, and a polyamide (PA) selective layer decorated with metal-organic framework (PA-MOF).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2022
The natural environment is a complex system, and there is never only one kind of nanomaterial entering the environment. However, many studies only considered the plant toxicity of one kind of nanomaterial and do not consider the influence of two or more kinds of nanomaterials on plant toxicity. Multi-walled carbon nanotubes (MWCNTs) and zinc oxide nanoparticles (ZnO NPs) are two common and widely used nanomaterials in water environment, so these two kinds of nanomaterials were chosen to explore the effects of their combined toxicity on cabbage.
View Article and Find Full Text PDFThe dye wastewater treatment by membrane separation technology has obtained extensive attention in recent years. Nevertheless, it was rare for research on the removal of differently charged mixed dyes. In this study, several UiO-66-NH composite membranes were prepared and optimization experiments were conducted.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2018
Treating dye wastewater by membrane filtration technology has received much attention from researchers all over the world, however, current studies mainly focused on the removal of singly charged dyes but actual wastewater usually contains dyes with different charges. In this study, the removal of neutral, cationic and anionic dyes in binary or ternary systems was conducted by using zirconium-based metal organic frameworks loaded on polyurethane foam (Zr-MOFs-PUF) membrane. The Zr-MOFs-PUF membrane was fabricated by an in-situ hydrothermal synthesis approach and a hot-pressing process.
View Article and Find Full Text PDFEcotoxicol Environ Saf
August 2018
Sulfate-reducing bacteria (SRB), a group of anaerobic prokaryotes, can use sulfur species as a terminal electron acceptor for the oxidation of organic compounds. They not only have significant ecological functions, but also play an important role in bioremediation of contaminated sites. Although numerous studies on metabolism and applications of SRB have been conducted, they still remain incompletely understood and even controversial.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2017
The phosphorescent l-cysteine modified manganese-doped zinc sulfide quantum dots (l-cys-MnZnS QDs) was developed for a highly sensitive detection of permanganate anions (MnO). l-cys-MnZnS QDs, which were easily synthesized in aqueous media using safe and low-cost materials, can emit intense phosphorescence even though the solution was not deoxygenated. However, the phosphorescence of l-cys-Mn-ZnS QDs was strongly quenched by MnO ascribed to the oxidation of l-cys and the increase of surface defects on l-cys-MnZnS QDs.
View Article and Find Full Text PDF