Background: Large language models (LLMs) are artificial intelligence (AI) tools that can generate human expert-like content and be used to accelerate the synthesis of scientific literature, but they can spread misinformation by producing misleading content. This study sought to characterize distinguishing linguistic features in differentiating AI-generated from human-authored scientific text and evaluate the performance of AI detection tools for this task.
Methods: We conducted a computational synthesis of 34 essays on cerebrovascular topics (12 generated by large language models [Generative Pre-trained Transformer 4, Generative Pre-trained Transformer 3.
Background: The American Medical Association recommends that electronic health record (EHR) notes, often dense and written in nuanced language, be made readable for patients and laypeople, a practice we refer to as the simplification of discharge notes. Our approach to achieving the simplification of discharge notes involves a process of incremental simplification steps to achieve the ideal note. In this paper, we present the first step of this process.
View Article and Find Full Text PDFObjective: Ontologies are essential for representing the knowledge of a domain. To make ontologies useful, they must encompass a comprehensive domain view. To achieve ontology enrichment, there is a need to discover new concepts to be added, either because they were missed in the first place, or the state-of-the-art has advanced to develop new real-world concepts.
View Article and Find Full Text PDFJ Am Med Inform Assoc
August 2025
Objectives: In 2023, AMIA's Inclusive Language and Context Style Guidelines (the "Guidelines") were approved by the Board of Directors and made a publicly available resource. This work began in 2021 through AMIA's DEI Task Force and subsequent DEI Committee; many members provided input, feedback, and time to create the Guidelines. In this paper, the authors provide a transparent account of the origin, development, contents, and dissemination of the Guidelines and share plans for their future development and use.
View Article and Find Full Text PDFDetailed social determinants of health (SDoH) is often buried within clinical text in EHRs. Most current NLP efforts for SDoH have limitations, investigating limited factors, deriving data from a single institution, using specific patient cohorts/note types, with reduced focus on generalizability. We aim to address these issues by creating cross-institutional corpora and developing and evaluating the generalizability of classification models, including large language models (LLMs), for detecting SDoH factors using data from four institutions.
View Article and Find Full Text PDFThe rapid growth of biomedical literature poses challenges for manual knowledge curation and synthesis. Biomedical Natural Language Processing (BioNLP) automates the process. While Large Language Models (LLMs) have shown promise in general domains, their effectiveness in BioNLP tasks remains unclear due to limited benchmarks and practical guidelines.
View Article and Find Full Text PDFAnnu Rev Biomed Data Sci
August 2025
Large language models (LLMs) have become powerful tools for biomedical applications, offering potential to transform healthcare and medical research. Since the release of ChatGPT in 2022, there has been a surge in LLMs for diverse biomedical applications. This review examines the landscape of text-based biomedical LLM development, analyzing model characteristics (e.
View Article and Find Full Text PDFAMIA Jt Summits Transl Sci Proc
May 2024
Relation Extraction (RE) is a natural language processing (NLP) task for extracting semantic relations between biomedical entities. Recent developments in pre-trained large language models (LLM) motivated NLP researchers to use them for various NLP tasks. We investigated GPT-3.
View Article and Find Full Text PDFThe consistent and persuasive evidence illustrating the influence of social determinants on health has prompted a growing realization throughout the health care sector that enhancing health and health equity will likely depend, at least to some extent, on addressing detrimental social determinants. However, detailed social determinants of health (SDoH) information is often buried within clinical narrative text in electronic health records (EHRs), necessitating natural language processing (NLP) methods to automatically extract these details. Most current NLP efforts for SDoH extraction have been limited, investigating on limited types of SDoH elements, deriving data from a single institution, focusing on specific patient cohorts or note types, with reduced focus on generalizability.
View Article and Find Full Text PDFJ Am Med Inform Assoc
September 2024
Bioinformatics
March 2024
Motivation: Large Language Models (LLMs) have the potential to revolutionize the field of Natural Language Processing, excelling not only in text generation and reasoning tasks but also in their ability for zero/few-shot learning, swiftly adapting to new tasks with minimal fine-tuning. LLMs have also demonstrated great promise in biomedical and healthcare applications. However, when it comes to Named Entity Recognition (NER), particularly within the biomedical domain, LLMs fall short of the effectiveness exhibited by fine-tuned domain-specific models.
View Article and Find Full Text PDFJ Biomed Inform
April 2024
Introduction: Patients' functional status assesses their independence in performing activities of daily living, including basic ADLs (bADL), and more complex instrumental activities (iADL). Existing studies have discovered that patients' functional status is a strong predictor of health outcomes, particularly in older adults. Depite their usefulness, much of the functional status information is stored in electronic health records (EHRs) in either semi-structured or free text formats.
View Article and Find Full Text PDFJ Am Med Inform Assoc
September 2024
Importance: The study highlights the potential of large language models, specifically GPT-3.5 and GPT-4, in processing complex clinical data and extracting meaningful information with minimal training data. By developing and refining prompt-based strategies, we can significantly enhance the models' performance, making them viable tools for clinical NER tasks and possibly reducing the reliance on extensive annotated datasets.
View Article and Find Full Text PDFThe pivotal impact of Social Determinants of Health (SDoH) on people's health and well-being has been widely recognized and researched. However, the effect of Commercial Determinants of Health (CDoH) is only now garnering increased attention. Developing an ontology for CDoH can offer a systematic approach to identifying and categorizing the diverse commercial factors affecting health.
View Article and Find Full Text PDFMotivation: Automated extraction of participants, intervention, comparison/control, and outcome (PICO) from the randomized controlled trial (RCT) abstracts is important for evidence synthesis. Previous studies have demonstrated the feasibility of applying natural language processing (NLP) for PICO extraction. However, the performance is not optimal due to the complexity of PICO information in RCT abstracts and the challenges involved in their annotation.
View Article and Find Full Text PDFJ Am Med Inform Assoc
August 2023
Objective: Social determinants of health (SDoH) play critical roles in health outcomes and well-being. Understanding the interplay of SDoH and health outcomes is critical to reducing healthcare inequalities and transforming a "sick care" system into a "health-promoting" system. To address the SDOH terminology gap and better embed relevant elements in advanced biomedical informatics, we propose an SDoH ontology (SDoHO), which represents fundamental SDoH factors and their relationships in a standardized and measurable way.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
February 2023
Background: Two years into the COVID-19 pandemic and with more than five million deaths worldwide, the healthcare establishment continues to struggle with every new wave of the pandemic resulting from a new coronavirus variant. Research has demonstrated that there are variations in the symptoms, and even in the order of symptom presentations, in COVID-19 patients infected by different SARS-CoV-2 variants (e.g.
View Article and Find Full Text PDFThe current intensive research on potential remedies and vaccinations for COVID-19 would greatly benefit from an ontology of standardized COVID terms. The Coronavirus Infectious Disease Ontology (CIDO) is the largest among several COVID ontologies, and it keeps growing, but it is still a medium sized ontology. Sophisticated CIDO users, who need more than searching for a specific concept, require orientation and comprehension of CIDO.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2020
Background: While enrichment of terminologies can be achieved in different ways, filling gaps in the IS-A hierarchy backbone of a terminology appears especially promising. To avoid difficult manual inspection, we started a research program in 2014, investigating terminology densities, where the comparison of terminologies leads to the algorithmic discovery of potentially missing concepts in a target terminology. While candidate concepts have to be approved for import by an expert, the human effort is greatly reduced by algorithmic generation of candidates.
View Article and Find Full Text PDFIn previous research, we have studied concepts that occur in pairs of medical terminologies and are known to be identical, because they have the same ID number in the Unified Medical Language System (UMLS). We observed that such concepts rarely have exactly the same sets of children (=subconcepts) in the two terminologies. The number of common children was found to vary widely.
View Article and Find Full Text PDFProceedings (IEEE Int Conf Bioinformatics Biomed)
December 2018
Maintenance of biomedical ontologies is difficult. We have previously developed a topological-pattern-based method to deal with the problem of identifying concepts in a reference ontology that could be of interest for insertion into a target ontology. Assuming that both ontologies are parts of the Unified Medical Language System (UMLS), the method suggests approximate locations where the target ontology could be extended with new concepts from the reference ontology.
View Article and Find Full Text PDFAMIA Annu Symp Proc
October 2019
Previously, we investigated pairs of ontologies with local similarities where corresponding "is-a" paths are of different lengths. This indicated the possibility of importing concepts from one ontology into the other. We referred to such structures as diamonds of concepts.
View Article and Find Full Text PDFBioPortal is widely regarded to be the world's most comprehensive repository of biomedical ontologies. With a coverage of many biomedical subfields by 716 ontologies (June 27, 2018), BioPortal is an extremely diverse repository. BioPortal maintains easily accessible information about the ontologies submitted by ontology curators.
View Article and Find Full Text PDF