Publications by authors named "Udunna C Anazodo"

Background: Cerebral white matter (WM) injury after ischemic stroke is associated with post-stroke cognitive impairment (PSCI), however, the interaction between sustained neuroinflammation and post-stroke WM injury is not well understood. Hybrid PET/MRI can provide insight into pathophysiological mechanisms linking chronic neuroinflammation, ischemic WM injury, and PSCI. Using PET/MRI, this study investigated the relationship between [F]FEPPA standardized uptake value ratio (SUVr) measurements of glial activation and diffusion tensor imaging (DTI) measurements of microstructure integrity in brain WM regions in the chronic phase at 6-months after acute ischemic stroke.

View Article and Find Full Text PDF

Global dementia cases are rising, particularly in low- and middle-income countries with limited health-care access and scarce resources, calling for preventive strategies that align with local capital and cultural practices. The Africa-FINGERS project, an adaptation of the Finnish FINGER trial, pioneers a culturally relevant, multidomain approach to dementia risk reduction for African settings. This Perspective article explores the efficacy of multimodal lifestyle interventions in reducing risks associated with cognitive decline, addressing the unique challenges involved and examining opportunities for implementing such programmes in Africa.

View Article and Find Full Text PDF

The Brain Tumor Segmentation–Africa dataset is the first annotated publicly available brain imaging dataset from an African population; it contains three-dimensional MRI scans, retrospectively acquired from institutions in Nigeria, in 146 adult patients with preoperative brain tumors.

View Article and Find Full Text PDF

Introduction: In Positron Emission Tomography (PET) imaging, the use of tracers increases radioactive exposure for longitudinal evaluations and in radiosensitive populations such as pediatrics. However, reducing injected PET activity potentially leads to an unfavorable compromise between radiation exposure and image quality, causing lower signal-to-noise ratios and degraded images. Deep learning-based denoising approaches can be employed to recover low count PET image signals: nonetheless, most of these methods rely on structural or anatomic guidance from magnetic resonance imaging (MRI) and fails to effectively preserve global spatial features in denoised PET images, without impacting signal-to-noise ratios.

View Article and Find Full Text PDF

Dementia prevention in Africa is critically underexplored, despite the continent's high prevalence of modifiable risk factors. With a predominantly young and middle-aged population, Africa presents a prime opportunity to implement evidence-based strategies that could significantly reduce future dementia cases and mitigate its economic impact. The multinational Africa-FINGERS program offers an innovative solution, pioneering culturally sensitive, multidomain interventions tailored to the unique challenges of the region.

View Article and Find Full Text PDF

Cerebral blood flow and blood-brain barrier permeability assessment are crucial hemodynamic parameters to measure under neurological conditions. In conjunction with positron emission tomography (PET), oxygen-15-labeled water has emerged as a gold standard for measuring cerebral perfusion; however, at higher flow rates, [O]water extraction becomes nonlinear. In such a scenario, freely diffusible [C]butanol can provide a truer estimate.

View Article and Find Full Text PDF

Purpose: Access to MRI in low- and middle-income countries (LMICs) remains among the poorest in the world. The lack of skilled MRI personnel exacerbates access gaps, reinforcing long-standing health disparities. The Scan With Me (SWiM) program aims to sustainably create a network of highly skilled MRI technologists in LMICs who will facilitate the transfer of MRI knowledge and skills to their peers and contribute to the implementation of highly valuable imaging protocols for effective clinical and research use.

View Article and Find Full Text PDF

Low-field magnetic resonance imaging can be engineered for widespread point-of-care diagnostics.

View Article and Find Full Text PDF

Background: Ischemic heart disease (IHD) is linked to brain white matter (WM) breakdown but how age or disease effects WM integrity, and whether it is reversible using cardiac rehabilitation (CR), remains unclear.

Purpose: To assess the effects of brain aging, cardiovascular disease, and CR on WM microstructure in brains of IHD patients following a cardiac event.

Study Type: Retrospective.

View Article and Find Full Text PDF
Article Synopsis
  • Gliomas are the most common and deadliest primary brain tumors, with a survival rate under 2 years post-diagnosis, and pose significant challenges in diagnosis and treatment, especially in low- and middle-income countries.
  • While research has improved treatment outcomes in wealthier regions, survival rates remain poor in places like Sub-Saharan Africa due to late diagnosis and lower-quality MRI technology.
  • The BraTS-Africa Challenge aims to integrate glioma MRI cases from Sub-Saharan Africa into global efforts to develop advanced computer-aided diagnostic tools that could improve detection and treatment in resource-limited healthcare settings.
View Article and Find Full Text PDF

The blood-brain barrier (BBB) consists of specialized cells that tightly regulate the in- and outflow of molecules from the blood to brain parenchyma, protecting the brain's microenvironment. If one of the BBB components starts to fail, its dysfunction can lead to a cascade of neuroinflammatory events leading to neuronal dysfunction and degeneration. Preliminary imaging findings suggest that BBB dysfunction could serve as an early diagnostic and prognostic biomarker for a number of neurological diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Duchenne muscular dystrophy (DMD) is a serious neuromuscular disorder caused by the loss of dystrophin, leading to severe muscle degeneration and premature death, often from heart or respiratory failure.
  • Innovative treatments have improved life expectancy for DMD patients but have also resulted in increased late-onset heart failure and cognitive decline, necessitating better assessment methods of related heart and brain issues.
  • The study introduces a TSPO-PET imaging protocol to investigate inflammation in the hearts and brains of a dystrophin-deficient mouse model, showing significant increased activity in these areas, which could help evaluate the effects of neuroinflammation alongside cardiac issues in DMD.
View Article and Find Full Text PDF

Significance Statement: Hemodialysis (HD) results in reduced brain blood flow, and HD-related circulatory stress and regional ischemia are associated with brain injury over time. However, studies to date have not provided definitive direct evidence of acute brain injury during a HD treatment session. Using intradialytic magnetic resonance imaging (MRI) and spectroscopy to examine HD-associated changes in brain structure and neurochemistry, the authors found that multiple white (WM) tracts had diffusion imaging changes characteristic of cytotoxic edema, a consequence of ischemic insult and a precursor to fixed structural WM injury.

View Article and Find Full Text PDF

Purpose: This systematic review provides a consensus on the clinical feasibility of machine learning (ML) methods for brain PET attenuation correction (AC). Performance of ML-AC were compared to clinical standards.

Methods: Two hundred and eighty studies were identified through electronic searches of brain PET studies published between January 1, 2008, and August 1, 2022.

View Article and Find Full Text PDF

Background: The purpose of this study was to assess the feasibility of using a minimally invasive simultaneous estimation method (SIME) to quantify the binding of the 18-kDa translocator protein tracer [F]FEPPA. Arterial sampling was avoided by extracting an image-derived input function (IDIF) that was metabolite-corrected using venous blood samples. The possibility of reducing scan duration to 90 min from the recommended 2-3 h was investigated by assuming a uniform non-displaceable distribution volume (V) to simplify the SIME fitting.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) technology has profoundly transformed current healthcare systems globally, owing to advances in hardware and software research innovations. Despite these advances, MRI remains largely inaccessible to clinicians, patients, and researchers in low-resource areas, such as Africa. The rapidly growing burden of noncommunicable diseases in Africa underscores the importance of improving access to MRI equipment as well as training and research opportunities on the continent.

View Article and Find Full Text PDF

Background: Major depressive disorder (MDD) is a debilitating mental illness that has been linked to increases in markers of inflammation, as well as to changes in brain functional and structural connectivity, particularly between the insula and the subgenual anterior cingulate cortex (sgACC). In this study, we directly related inflammation and dysconnectivity in treatment-resistant MDD by concurrently measuring the following: microglial activity with [F]N-2-(fluoroethoxyl)benzyl-N-(4phenoxypyridin-3-yl)acetamide ([F]FEPPA) positron emission tomography (PET); the severity of MDD; and functional or structural connectivity among insula or sgACC nodes.

Methods: Twelve patients with treatment-resistant MDD (8 female, 4 male; mean age ± standard deviation 54.

View Article and Find Full Text PDF

Routine clinical use of absolute PET quantification techniques is limited by the need for serial arterial blood sampling for input function and more importantly by the lack of automated pharmacokinetic analysis tools that can be readily implemented in clinic with minimal effort. PET/MRI provides the ability for absolute quantification of PET probes without the need for serial arterial blood sampling using image-derived input functions (IDIFs). Here we introduce caliPER, a modular and scalable software for simplified pharmacokinetic modeling of PET probes with irreversible uptake or binding based on PET/MR IDIFs and Patlak Plot analysis.

View Article and Find Full Text PDF

Cardiovascular disease continues to be a major burden facing healthcare systems worldwide. In the developed world, cardiovascular magnetic resonance (CMR) is a well-established non-invasive imaging modality in the diagnosis of cardiovascular disease. However, there is significant global inequality in availability and access to CMR due to its high cost, technical demands as well as existing disparities in healthcare and technical infrastructures across high-income and low-income countries.

View Article and Find Full Text PDF

Background: Clinical diagnosis of frontotemporal dementia (FTD) remains a challenge due to the overlap of symptoms among FTD subtypes and with other psychiatric disorders. Perfusion imaging by arterial spin labeling (ASL) is a promising non-invasive alternative to established PET techniques; however, its sensitivity to imaging parameters can hinder its ability to detect perfusion abnormalities.

Purpose: This study evaluated the similarity of regional hypoperfusion patterns detected by ASL relative to the gold standard for imaging perfusion, PET with radiolabeled water (O-water).

View Article and Find Full Text PDF

Background: Advances in the understanding of the pathophysiology of frontotemporal dementia (FTD) and related disorders, along with the development of novel candidate disease modifying treatments, have stimulated the need for tools to assess the efficacy of new therapies. While perfusion imaging by arterial spin labeling (ASL) is an attractive approach for longitudinal imaging biomarkers of neurodegeneration, sources of variability between sessions including arterial transit times (ATT) and fluctuations in resting perfusion can reduce its sensitivity. Establishing the magnitude of perfusion changes that can be reliably detected is necessary to delineate longitudinal perfusion changes related to disease processes from the effects of these sources of error.

View Article and Find Full Text PDF

Background: Hybrid PET/MRI can non-invasively improve localization and delineation of the epileptic focus (EF) prior to surgical resection in medically refractory epilepsy (MRE), especially when MRI is negative or equivocal. In this study, we developed a PET-guided diffusion tractography (PET/DTI) approach combining F-fluorodeoxyglucose PET (FDG-PET) and diffusion MRI to investigate white matter (WM) integrity in MRI-negative MRE patients and its potential impact on epilepsy surgical planning.

Methods: FDG-PET and diffusion MRI of 14 MRI-negative or equivocal MRE patients were used to retrospectively pilot the PET/DTI approach.

View Article and Find Full Text PDF

Objective: Hybrid PET/MRI may improve detection of seizure-onset zone (SOZ) in drug-resistant epilepsy (DRE), however, concerns over PET bias from MRI-based attenuation correction (MRAC) have limited clinical adoption of PET/MRI. This study evaluated the diagnostic equivalency and potential clinical value of PET/MRI against PET/CT in DRE.

Materials And Methods: MRI, FDG-PET and CT images (n = 18) were acquired using a hybrid PET/MRI and a CT scanner.

View Article and Find Full Text PDF