Adv Sci (Weinh)
March 2025
Dietary high salt intake is increasingly recognized as a risk factor for cognitive decline and dementia, including Alzheimer's disease (AD). Recent studies have identified a population of disease-associated astrocytes (DAA)-like astrocytes closely linked to amyloid deposition and tau pathology in an AD mouse model. However, the presence and role of these astrocytes in high-salt diet (HSD) models remain unexplored.
View Article and Find Full Text PDFFerroptosis is a form of regulated cell death that is mainly triggered by iron-dependent lipid peroxidation. A growing body of evidence suggests that ferroptosis is involved in the pathophysiology of traumatic brain injury (TBI), and tropomyosin-related kinase B (TrkB) deficiency would mediate TBI pathologies. As an agonist of TrkB and an immediate precursor of melatonin, N-acetyl serotonin (NAS) exerts several beneficial effects on TBI, but there is no information regarding the role of NAS in ferroptosis after TBI.
View Article and Find Full Text PDFNumerous studies have demonstrated the role of neuroinflammation in mediating acute pathophysiological events of early brain injury after subarachnoid hemorrhage (SAH). However, it is not clear how to target this inflammatory cascade after SAH. M1 activation of microglia is an important pathological mechanism driving neuroinflammation in SAH, which is considered aggressive, leading to cytotoxicity and robust inflammation related to the release of proinflammatory cytokines and chemokines after SAH.
View Article and Find Full Text PDFAs a specific ferroptosis marker, transferrin receptor 1 (TfR1) expression is increased following traumatic brain injury (TBI), but the precise role of TfR1 in TBI-induced ferroptosis and neurodegeneration remains to be determined. To further identify more potent ferroptosis inhibitors and effective targets for treating TBI, our study aims at investigating the effects of TfR1 on ferroptosis in a mouse TBI model using ferristatin II (an iron uptake and TfR1 inhibitor). The effect of ferristatin II was first verified in the HT-22 cell line and showed antiferroptotic action when exposed to ferric citrate (FAC), which is in parallel with the results obtained from the positive controls, including deferoxamine (DFO) and liproxstatin-1 (Lip-1).
View Article and Find Full Text PDFAutophagy is a self-phagocytic and highly evolutionarily conserved intracellular lysosomal catabolic system, which plays a vital role in a variety of trauma models, including skin wound healing (SWH). However, the roles and potential mechanisms of autophagy in SWH are still controversial. We firstly investigated the role of autophagy in SWH-induced wound closure rate, inflammatory response, and histopathology, utilizing an inhibitor of autophagy 3-methyladenine (3-MA) and its agonist rapamycin (RAP).
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major cause of death and disability worldwide. Various forms of cells death are involved in the pathological process of TBI, without exception to ferroptosis, which is mainly triggered by iron-dependent lipid peroxidation. Although there have been studies on ferroptosis and TBI, the effect of ruxolitinib (Ruxo), one type of FDA approved drugs for treating myelofibrosis, on the process of ferroptosis post-TBI is remained non-elucidated.
View Article and Find Full Text PDFAs a selective inhibitor of mitochondrial fission protein dynamin-related protein-1 (Drp1), mitochondrial division inhibitor 1 (mdivi-1) can cross the blood-brain barrier (BBB) and exert neuroprotection. However, it remains unclear whether mdivi-1 can attenuate intracerebral hemorrhage (ICH)-induced secondary brain injury. This study was undertaken to characterize the roles of mdivi-1 in short-term and long-term behavioral outcomes, along with synaptic plasticity changes in mice after ICH.
View Article and Find Full Text PDFBrain injury is accompanied by serious iron metabolism disorder and oxidative stress. As a novel form of regulated cell death (RCD) depending on lipid peroxidation caused by iron overload, ferroptosis (FPT) further aggravates brain injury, which is different from apoptosis, autophagy and other traditional cell death in terms of biochemistry, morphology and genetics. Noteworthy, transcriptional regulator NRF2 plays a key role in the cell antioxidant system, and many genes related to FPT are under the control of NRF2, including genes for iron regulation, thiol-dependent antioxidant system, enzymatic detoxification of RCS and carbonyls, NADPH regeneration and ROS sources from mitochondria or extra-mitochondria, which place NRF2 in the key position of regulating the ferroptotic death.
View Article and Find Full Text PDFAccumulating evidence demonstrates that ferroptosis may be important in the pathophysiological process of traumatic brain injury (TBI). As a major hormone of the pineal gland, melatonin exerts many beneficial effects on TBI, but there is no information regarding the effects of melatonin on ferroptosis after TBI. As expected, TBI resulted in the time-course changes of ferroptosis-related molecules expression and iron accumulation in the ipsilateral cortex.
View Article and Find Full Text PDFHistol Histopathol
October 2020
Traumatic brain injury (TBI) is one of the most significant health care problems worldwide, causing disability and death especially among young individuals. Although a large range of agents and therapies have been proved beneficial to lesions post-TBI to some extent, effective treatments have not been translated to the clinic. As a newly discovered form of iron-dependent regulated cell death, ferroptosis has been implicated in TBI.
View Article and Find Full Text PDFTropomyosin-related kinase B (TrkB) has emerged as a key mediator in the pathophysiology of traumatic brain injury (TBI). However, it is not known whether TrkB's agonist N-acetyl serotonin (NAS) involves in neuronal damage and brain dysfunction caused by TBI that is known as one of the most important causes of disability and death worldwide. Here, we investigated the effects of NAS on brain edema, blood-brain barrier (BBB), apoptosis activation and autophagy dysfunction after experimental TBI.
View Article and Find Full Text PDF