Publications by authors named "Thomas Picot"

The increase in superconducting transition temperature (T) of Sn nanostructures in comparison to bulk, was studied. Changes in the phonon density of states (PDOS) of the weakly coupled superconductor Sn were analyzed and correlated with the increase in T measured by magnetometry. The PDOS of all nanostructured samples shows a slightly increased number of low-energy phonon modes and a strong decrease in the number of high-energy phonon modes in comparison to the bulk Sn PDOS.

View Article and Find Full Text PDF

The free-standing Au cluster has a unique tetrahedral shape and a large HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gap of around 1.8 electron volts. The "magic" Au has been intensively used as a model system for understanding the catalytic and optical properties of gold nanoclusters.

View Article and Find Full Text PDF

Single electron transistors (SETs) are powerful devices to study the properties of nanoscale objects. However, the capabilities of placing a nano-object between electrical contacts under pristine conditions are lacking. Here, we developed a versatile two point contacting approach that tackles this challenge, which is demonstrated by constructing in situ a prototypical SET device consisting of a single aluminium cluster of 66 ± 5 atoms, deposited directly in a gold nanogap using an innovative cluster beam deposition technique.

View Article and Find Full Text PDF

We investigated the interaction between size-selected Au and Au clusters and graphene. Hereto preformed clusters are deposited on graphene field-effect transistors, a novel approach which offers a high control over the number of atoms per cluster, the deposition energy and the deposited density. The induced p-doping and charge carrier scattering indicate that a major part of the deposited clusters remains on the graphene flake as either individual or sub-nm coalesced entities.

View Article and Find Full Text PDF

Membranes and their size-selective filtering properties are universal in nature and their behavior is exploited to design artificial membranes suited for, e.g., molecule or nanoparticle filtering and separation.

View Article and Find Full Text PDF