Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Single electron transistors (SETs) are powerful devices to study the properties of nanoscale objects. However, the capabilities of placing a nano-object between electrical contacts under pristine conditions are lacking. Here, we developed a versatile two point contacting approach that tackles this challenge, which is demonstrated by constructing in situ a prototypical SET device consisting of a single aluminium cluster of 66 ± 5 atoms, deposited directly in a gold nanogap using an innovative cluster beam deposition technique. The gate driven conductance measurements demonstrate Coulomb blockade oscillations at room temperature correlating with an extracted charging energy of 0.14 eV, which is five times larger than kT at 300 K. Our work provides a model SET device platform to probe the quantum features of nano-objects with high precision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr09467a | DOI Listing |