Publications by authors named "Soon Hee Kim"

Despite various attempts to replicate complex organ structures using 3D bioprinting technologies, the fabrication of a tissue-engineered endometrium with integrated vasculature remains a significant challenge in the field. In this study, we developed three bioinks by combining glycidyl methacrylate-modified GelMA (GelMAGMA) hydrogel precursor with endometrial stem cells, stromal cells, and endothelial cells to create a vascularized endometrial construct. Utilizing a one-step material-switching DLP 3D bioprinter capable of multi-material printing, we successfully fabricated an engineered endometrial construct with a vascular channel extending through both the functional and basal layers.

View Article and Find Full Text PDF

Surface coatings for titanium implants have been actively investigated using numerous materials to improve biocompatibility and osteointegration. This study developed a novel porous coating method for titanium implants; we coated commercially pure titanium (Cp-Ti) using the photocurable properties of methacrylated silk fibroin (SilMA). Surface morphologies and alloying chemistry after coating were investigated by scanning electron microscopy (SEM) and EDS, while the biocompatibility of the SilMA-coated Cp-Ti was evaluated by the CCK-8 and live/dead assays.

View Article and Find Full Text PDF

This study investigates a method for programming immune cells using a biomaterial-based system, providing an alternative to traditional cell manipulation techniques. It addresses the limitations of engineered adoptive T cell therapies, such as T cell exhaustion, by introducing a gelatin-hyaluronic acid (GH-GMA) hydrogel system. We characterized tonsil mesenchymal stem cells (TMSCs), lymphatic endothelial cells (T-LECs), stimulated T-CD8 T cells (STCs), and GH-GMA biomaterials.

View Article and Find Full Text PDF

In this present study, we introduce an innovative hybrid 3D bioprinting methodology that integrates fused deposition modeling (FDM) with top-down digital light processing (DLP) for the fabrication of an artificial trachea. Initially, polycaprolactone (PCL) was incorporated using an FDM 3D printer to provide essential mechanical support, replicating the structure of tracheal cartilage. Subsequently, a chondrocyte-laden glycidyl methacrylated silk fibroin hydrogel was introduced via top-down DLP into the PCL scaffold (PCL-Sil scaffold).

View Article and Find Full Text PDF

The importance of hydrogels in tissue engineering cannot be overemphasized due to their resemblance to the native extracellular matrix. However, natural hydrogels with satisfactory biocompatibility exhibit poor mechanical behavior, which hampers their application in stress-bearing soft tissue engineering. Here, we describe the fabrication of a double methacrylated gelatin bioink covalently linked to graphene oxide (GO) via a zero-length crosslinker, digitally light-processed (DLP) printable into 3D complex structures with high fidelity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how a specific SNP (FADS1_rs174546T) in the FADS1 gene is linked to high serum triglyceride levels, identifying it as a risk factor for metabolic diseases in Koreans.
  • Results show that FADS1_rs174546T is associated with an increase of approximately 6.48 mg/dL in triglycerides and reveals reduced transcriptional activity compared to another variant (rs174546C).
  • Formononetin, a compound that interacts with FADS1, has the potential to enhance gene expression and improve triglyceride levels, suggesting it may be a useful dietary intervention for those with the rs174546T variant.
View Article and Find Full Text PDF

A three-dimensional (3D) artificial skin model offers diverse platforms for skin transplantation, disease mechanisms, and biomaterial testing for skin tissue. However, implementing physiological complexes such as the neurovascular system with living cells in this stratified structure is extremely difficult. In this study, full-thickness skin models were fabricated from methacrylated silk fibroin (Silk-GMA) and gelatin (Gel-GMA) seeded with keratinocytes, fibroblasts, and vascular endothelial cells representing the epidermis and dermis layers through a digital light processing (DLP) 3D printer.

View Article and Find Full Text PDF

Herein, we report the first study to create a three-dimensional (3D) bioprinted artificial larynx for whole-laryngeal replacement. Our 3D bio-printed larynx was generated using extrusion-based 3D bioprinter with rabbit's chondrocyte-laden gelatin methacryloyl (GelMA)/glycidyl-methacrylated hyaluronic acid (GMHA) hybrid bioink. We used a polycaprolactone (PCL) outer framework incorporated with pores to achieve the structural strength of printed constructs, as well as to provide a suitable microenvironment to support printed cells.

View Article and Find Full Text PDF

3D-printed artificial skeletal muscle, which mimics the structural and functional characteristics of native skeletal muscle, is a promising treatment method for muscle reconstruction. Although various fabrication techniques for skeletal muscle using 3D bio-printers are studied, it is still challenging to build a functional muscle structure. A strategy using microvalve-assisted coaxial 3D bioprinting in consideration of functional skeletal muscle fabrication is reported.

View Article and Find Full Text PDF

Hemostasis plays an essential role in all surgical procedures. Uncontrolled hemorrhage is the primary cause of death during surgeries, and effective blood loss control can significantly reduce mortality. For modern surgeons to select the right agent at the right time, they must understand the mechanisms of action, the effectiveness, and the possible adverse effects of each agent.

View Article and Find Full Text PDF

Chemically modified silk fibroin (SF) bioink has been used for three-dimensional (3D) bioprinting in tissue engineering because of its biocompatibility and printability. Also, fluorescent silk fibroin (FSF) from transgenic silkworms has been recently applied in biomedicine because of its fluorescence property. However, the fabrication of fluorescent hydrogel from FSF has not been elucidated.

View Article and Find Full Text PDF

Diabetes mellitus renders patients susceptible to chronic wounds and various infections. Regarding the latter, fungal infections are of particular concern since, although they are the source of significant morbidity and mortality in immunocompromised patients, they are generally resistant to conventional treatment and a definite treatment strategy has not yet been established. Herein, we report the treatment of skin wounds in a diabetic rat model, infected by , with low temperature helium plasma generated in a hand-held atmospheric jet device.

View Article and Find Full Text PDF

Obese Asians are more susceptible to metabolic diseases than obese Caucasians of the same body mass index (BMI). We hypothesized that the genetic variants associated with obesity risk interact with the lifestyles of middle-aged and elderly adults, possibly allowing the development of personalized interventions based on genotype. We aimed to examine this hypothesis in a large city hospital-based cohort in Korea.

View Article and Find Full Text PDF

The development of biocompatible and precisely printable bioink addresses the growing demand for three-dimensional (3D) bioprinting applications in the field of tissue engineering. We developed a methacrylated photocurable silk fibroin (SF) bioink for digital light processing 3D bioprinting to generate structures with high mechanical stability and biocompatibility for tissue engineering applications. Procedure 1 describes the synthesis of photocurable methacrylated SF bioink, which takes 2 weeks to complete.

View Article and Find Full Text PDF

Purpose: The transient receptor potential vanilloid 6 (TRPV6) channel is overexpressed in prostate cancer and its silencing is known to inhibit the growth of LNCaP cells. However, the role of TRPV6 in the metastasis of prostate cancer cells and its relationship to the invasive markers, matrix metalloproteinase (MMP) and cathepsin B, is unclear. Thus, the present study was focused on understanding these tumor-related processes.

View Article and Find Full Text PDF

Cell-based tissue engineering strategies have been widely established. However, the contributions of the transplanted cells within the tissue-engineered scaffolds to the process of tissue regeneration remain poorly understood. Near-infrared (NIR) fluorescence imaging systems have great potential to non-invasively monitor the transplanted cell-based tissue constructs.

View Article and Find Full Text PDF

Among various bioreactors used in the field of tissue engineering and regenerative medicine, a magnetic bioreactor is more capable of providing steady force to the cells while avoiding direct manipulation of the materials. However, most of them are complex and difficult to fabricate, with drawbacks in terms of consistency and biocompatibility. In this study, a magnetic bioreactor system and a magnetic hydrogel were manufactured by single-stage three-dimensional (3D) printing with digital light processing (DLP) technique for differentiation of myoblast cells.

View Article and Find Full Text PDF

Hydrogel with chemical modification has been used for 3D printing in the biomedical field of cell and tissue-based regeneration because it provides a good cellular microenvironment and mechanical supportive ability. As a scaffold and a matrix, hydrogel itself has to be modified chemically and physically to form a β-sheet crosslinking structure for the strength of the biomaterials. These chemical modifications could affect the biological damage done to encapsulated cells or surrounding tissues due to unreacted chemical residues.

View Article and Find Full Text PDF

Three-dimensional (3D) printing technology holds great potential to fabricate complex constructs in the field of regenerative medicine. Researchers in the surgical fields have used 3D printing techniques and their associated biomaterials for education, training, consultation, organ transplantation, plastic surgery, surgical planning, dentures, and more. In addition, the universal utilization of 3D printing techniques enables researchers to exploit different types of hardware and software in, for example, the surgical fields.

View Article and Find Full Text PDF

Encapsulated stem cells in various biomaterials have become a potentially promising cell transplantation strategy in the treatment of various neurologic disorders. However, there is no ideal cell delivery material and method for clinical application in brain diseases. Here we show silk fibroin (SF)-based hydrogel encapsulated engineered human mesenchymal stem cells (hMSCs) to overproduce brain-derived neurotrophic factor (BDNF) (BDNF-hMSC) is an effective approach to treat brain injury through trans-septal cell transplantation in the rat model.

View Article and Find Full Text PDF

Thoracic kyphosis commonly occurs in subacromial impingement syndrome. This pilot study investigated the effect of thoracic joint mobilization and extension exercise on improving thoracic alignment and shoulder function. In total, 30 patients with subacromial impingement syndrome were recruited and randomly assigned to three groups, the joint mobilization group ( = 10), exercise group ( = 10), and combination group ( = 10).

View Article and Find Full Text PDF

Recently, four-dimensional (4D) printing is emerging as the next-generation biofabrication technology. However, current 4D bioprinting lacks biocompatibility or multi-component printability. In addition, suitable implantable targets capable of applying 4D bioprinted products have not yet been established, except theoretical and in vitro study.

View Article and Find Full Text PDF

The traditional Korean diet (K-diet) is considered to be healthy and circulating microRNAs (miRs) have been proposed as useful markers or targets in diet therapy. We, therefore, investigated the metabolic influence of the K-diet by evaluating the expression of plasma and salivary miRs. Ten women aged 50 to 60 years were divided into either a K-diet or control diet (a Westernized Korean diet) group.

View Article and Find Full Text PDF

Reduced graphene oxide (rGO) has wide application as a nanofiller in the fabrication of electroconductive biocomposites due to its exceptional properties. However, the hydrophobicity and chemical stability of rGO limit its ability to be incorporated into precursor polymers for physical mixing during biocomposite fabrication. Moreover, until now, no suitable rGO-combining biomaterials that are stable, soluble, biocompatible, and 3D printable have been developed.

View Article and Find Full Text PDF