Despite various attempts to replicate complex organ structures using 3D bioprinting technologies, the fabrication of a tissue-engineered endometrium with integrated vasculature remains a significant challenge in the field. In this study, we developed three bioinks by combining glycidyl methacrylate-modified GelMA (GelMAGMA) hydrogel precursor with endometrial stem cells, stromal cells, and endothelial cells to create a vascularized endometrial construct. Utilizing a one-step material-switching DLP 3D bioprinter capable of multi-material printing, we successfully fabricated an engineered endometrial construct with a vascular channel extending through both the functional and basal layers.
View Article and Find Full Text PDFThis study investigates a method for programming immune cells using a biomaterial-based system, providing an alternative to traditional cell manipulation techniques. It addresses the limitations of engineered adoptive T cell therapies, such as T cell exhaustion, by introducing a gelatin-hyaluronic acid (GH-GMA) hydrogel system. We characterized tonsil mesenchymal stem cells (TMSCs), lymphatic endothelial cells (T-LECs), stimulated T-CD8 T cells (STCs), and GH-GMA biomaterials.
View Article and Find Full Text PDFThe Filovirus family member, Ebola virus (EBOV), is a highly infectious pathogen responsible for viral hemorrhagic fever. EBOV has a fatality rate in the range 50%-90% in primates. The lethal viral hemorrhagic attack in 2014 by EBOV has forced the human race to look for rapid countermeasures.
View Article and Find Full Text PDF