Background: Plant resistance inducers based on nanomaterials (NMs) are a cutting-edge and promising field of interdisciplinary research, focused on developing environmentally and ecologically friendly alternatives for protecting crops. Studies have shown that NMs composed of silicon (SiO) and carbon quantum dots (CDs) can help plants better withstand various environmental and pest-related stresses.
Results: We synthesized and characterized SiO-coated CDs (SiO@CDs) NMs that were found to be absorbed by tobacco leaves.
The regulation of locomotor behavior is essential for insects to perform their life activities. The central nervous system plays a pivotal role in modulating physiological behaviors, particularly movement, with neuropeptides serving as key modulators of these processes. Among these, adipokinetic hormone (AKH) was originally identified in insects as a neurohormone involved in lipid mobilization.
View Article and Find Full Text PDFBactrocera dorsalis is a major pest causing economic losses in fruit and vegetable production. Current control methods, such as synthetic pesticides and male annihilation techniques, have drawbacks, including health risks, resistance development, and ineffectiveness against females. This study investigates the attractions and oviposition stimulant activities of five common volatiles-[isobutyl acetate (A), isoamyl acetate (B), isobutyl butyrate (C), isoamyl isovalerate (D), and isoamyl butyrate (E)]-from the most preferred hosts: mango, guava, orange, and banana.
View Article and Find Full Text PDFBackground: Maize is a critically important world staple food, yet its productivity is exposed to a notorious invasive pest of the fall armyworm (Spodoptera frugiperda). To discern the transgenerational effects and potential pest control efficacy, we evaluated chlorantraniliprole, azadirachtin, and uniconazole on S. frugiperda development, reproduction, metabolome, and larval transcriptome.
View Article and Find Full Text PDFInsect neuropeptides are crucial for chemical communication, influencing growth, metabolism, and behavior. MicroRNAs (miRNAs), as non-coding RNAs, primarily regulate target gene expression. However, the co-regulation between miRNAs and neuropeptides in modulating locomotor behavior remains poorly understood.
View Article and Find Full Text PDFFeeding and molting are particularly important physiological processes for insects, and it has been reported that neuropeptides are involved in the nervous regulation of these 2 processes. Sulfakinin (SK) is an important neuropeptide that is widely distributed among insects and plays a pivotal role in regulating feeding, courtship, aggression, and locomotion. In this study, we investigated the involvement of SK in feeding and molting on a highly notorious pest insect, the fall armyworm, Spodoptera frugiperda.
View Article and Find Full Text PDFNatalisin (NTL) is a conserved neuropeptide, only present in insects, that has been reported to regulate their sexual activity. In this study, we investigated the involvement of NTL in the reproductive behaviors of a major invasive pest, Spodoptera frugiperda. We identified NTL precursor-encoded transcripts, and evaluated their transcript levels in different stages and tissues of S.
View Article and Find Full Text PDFBackground: To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M.
View Article and Find Full Text PDFBackground: Tomato (Solanum lycopersicum L.) is an economically important vegetable crop around the globe. Tomato yellow leaf curling (TYLC) is the most devastating viral disease posing a serious threat to tomato production throughout the tropical and subtropical world.
View Article and Find Full Text PDFNeuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G.
View Article and Find Full Text PDFInsect CAPA neuropeptidesare considered to affect water and ion balance by mediating the physiological metabolism activities of the Malpighian tubules. In previous studies, the CAPA-PK analogue 1895 (2Abf-Suc-FGPRLamide) was reported to decrease aphid fitness when administered through microinjection or via topical application. However, a further statistically significant decrease in the fitness of aphids and an increased mortality could not be established with pairwise combinations of 1895 with other CAPA analogue.
View Article and Find Full Text PDFInsect neuropeptides regulate various physiological processes, such as reproduction, feeding, growth and development, and have been considered as viable targets in the development of alternative strategies for pest control. Amongst these neuropeptides is myosuppressin (MS), a very conserved neuropeptide that has been reported to regulate cardiac and skeletal muscle contractility, feeding and pupal diapause in insects. In this study, we investigated the involvement of MS in fecundity in a notorious defoliator of potato and other solanaceous plants, the Colorado potato beetle (CPB), Leptinotarsa decemlineata.
View Article and Find Full Text PDFBackground: Insect Capability neuropeptides (CAP2b/CAPA-PKs) play a critical role in modulating different physiologies and behavior in insects. In a previous proof-of-concept study, the CAP2b analogues 1895 (2Abf-Suc-FGPRLamide) and 2129 (2Abf-Suc-ATPRIamide) were reported to reduce aphid fitness when administered by injection. In the current study, the insecticidal efficacy of 1895 and 2129 on the peach potato aphid Myzus persicae was analyzed by topical application, simulating a spray application scenario in the field.
View Article and Find Full Text PDFNatalisins (NTLs) are conservative neuropeptides, which are only found in arthropods and are documented to regulate reproductive behaviors in insects. In our previous study, we have confirmed that NTLs regulate the reproductive process in an important agricultural pest, Bactrocera dorsalis (Hendel). Hence, in this study, to further confirm the in vivo function of NTL receptor (NTLR) and assess the potential of NTLR as an insecticide target, RNA interference targeting NTLR mRNA was performed.
View Article and Find Full Text PDFNeuropeptides and protein hormones are very important signaling molecules, and are involved in the regulation and coordination of various physiological processes in invertebrates and vertebrates. Using a bioinformatics approach, we screened the recently sequenced genome and six tissue-specific transcriptome databases (central nervous system, fat body, ovary, testes, male accessory glands, antennae) of the oriental fruit fly (Bactrocera dorsalis) that is economically one of the most important pest insects of tropical and subtropical fruit. Thirty-nine candidate genes were found to encode neuropeptides or protein hormones.
View Article and Find Full Text PDFEnergy homeostasis requires continuous compensation for fluctuations in energy expenditure and availability of food resources. In insects, energy mobilization is under control of the adipokinetic hormone (AKH) where it is regulating the nutritional status by supporting the mobilization of lipids. In this study, we characterized the gene coding for the AKH receptor (AKHR) and investigated its function in the oriental fruit fly (Bactrocera dorsalis) that is economically one of the most important pest insects of tropical and subtropical fruit.
View Article and Find Full Text PDFInsects must undergo ecdysis for successful development and growth, and the ecdysis triggering hormone (ETH), released by the Inka cells, is a master hormone in this process. In this study, we determined the sequence of the ETH precursor and receptors in an agriculturally important pest insect, the oriental fruit fly (Hendel). We identified two functionally distinct splice receptor isoforms: BdETH-R-A and BdETH-R-B, and when expressed in Chinese hamster ovary (CHO-WTA11) cells, they exhibited a high sensitivity to the two mature peptides BdETH1 and BdETH2.
View Article and Find Full Text PDFJ Insect Physiol
May 2017
The insect short neuropeptide F (sNPF) family has been shown to modulate diverse physiological processes, such as feeding, appetitive olfactory behavior, locomotion, sleep homeostasis and hormone release. In this study, we identified the sNPF (BdsNPF) and its receptor (BdsNPFR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Afterwards, the receptor cDNA was functionally expressed in Chinese hamster ovary cell lines.
View Article and Find Full Text PDFCorazonin (Crz) is a neuropeptide hormone, but also a neuropeptide modulator that is internally released within the CNS, and it has a widespread distribution in insects with diverse physiological functions. Here, we identified and cloned the cDNAs of that encode Crz and its receptor CrzR. Mature has 11 residues with a unique Ser substitution (instead of the typical Asn) and a His in the evolutionary variable position 7.
View Article and Find Full Text PDFInsect tachykinin-related peptide (TRP), an ortholog of tachykinin in vertebrates, has been linked with regulation of diverse physiological processes, such as olfactory perception, locomotion, aggression, lipid metabolism and myotropic activity. In this study, we investigated the function of TRP (BdTRP) and its receptor (BdTRPR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis. BdTRPR is a typical G-protein coupled-receptor (GPCR), and it could be activated by the putative BdTRP mature peptides with the effective concentrations (EC) at the nanomolar range when expressed in Chinese hamster ovary cells.
View Article and Find Full Text PDFThe biogenic amine octopamine plays a critical role in the regulation of many physiological processes in insects. Octopamine transmits its action through a set of specific G-protein coupled receptors (GPCRs), namely octopamine receptors. Here, we report on a β-adrenergic-like octopamine receptor gene (BdOctβR1) from the oriental fruit fly, Bactrocera dorsalis (Hendel), a destructive agricultural pest that occurs in North America and the Asia-Pacific region.
View Article and Find Full Text PDF