Polyurethane (PU) is a promising material for addressing challenges in bone grafting. This study was designed to enhance the bone grafting capabilities of PU by integrating hydroxyapatite (HAp), which is known for its osteoconductive and osteoinductive potential. Moreover, a uniform distribution of HAp in the porous structure of PU increased the effectiveness of bone grafts.
View Article and Find Full Text PDFThe surfaces of cold-rolled titanium-containing ferrite stainless steel (TCFSS) strips produced from scrap are prone to severe peeling owing to cracking near slab inclusions during hot rolling. In this study, the Taguchi method was used to prevent peeling defects and clogging of the submerged entrance nozzle, and the optimal casting parameters, such as the degree of casting overheating, casting speed, stirring time, and inclination, were determined. The results showed that increasing the degree of casting overheating and decreasing the casting speed prevented clogging and effectively mitigated peeling defects.
View Article and Find Full Text PDFNowadays, the structural complexity of dyes used in the textile industry and the widely adopted water-saving strategy in the dyeing processes often fail plants' biological wastewater treatment units due to chemical oxygen demand (COD) overload. To alleviate this problems, this study investigated a regenerable adsorption-oxidation process to treat dyeing wastewater with COD around 10,000 mg/dm using a highly nano-pored activated carbon (AC) as a COD adsorbent, followed by its regeneration using hydrogen peroxide as an oxidizing reagent. In addition to studying AC's COD adsorption and oxidation performance, its operational treatment conditions in terms of temperature and pH were assessed.
View Article and Find Full Text PDFMaterials (Basel)
February 2022
Poor formability in hot-rolled strips may be attributed to the many pearlite-banded structures (PBSs) that develop in steel during the hot-rolling process. The challenge of manufacturing strips with minimum PBSs is that multiple factors influence the amount and distribution of the PBSs. This study used the Taguchi method to find the optimum hot-rolling parameters to obtain strips with a reduced number of PBSs.
View Article and Find Full Text PDFIndium tin oxide (ITO) thin films on polycarbonate (PC) substrates were patterned using the laser direct-write (LDW) technique to form an isolation line. The effect of the LDW parameters (power, pulse repetition rate, and defocusing distance) on the isolation line width, depth and roughness of the PC within the line was investigated. Additionally, the Taguchi method of experimental design was applied to determine the optimal parameters of LDW.
View Article and Find Full Text PDFPolymers (Basel)
May 2021
This study developed a tannic acid (TA)-supplemented 2-hydroxyethyl methacrylate-co-sulfobetaine methacrylate (HEMA-co-SBMA) nanocomposite hydrogel with mineralization and antibacterial functions. Initially, hybrid hydrogels were synthesized by incorporating SBMA into the HEMA network and the influence of SBMA on the chemical structure, water content, mechanical properties, and antibacterial characteristics of the hybrid HEMA/SBMA hydrogels was examined. Then, nanoclay (Laponite XLG) was introduced into the hybrid HEMA/SBMA hydrogels and the effects evaluated of the nanoclay on the chemical structure, water content, and mechanical properties of these supplemented hydrogels.
View Article and Find Full Text PDFA biocomposite coating comprising chitosan and ZnO deposited on a porous Ti oxide is developed to avoid orthopedic and dental implant-related infections. The coating comprised of an inner layer of nanoporous TiO and the outer layer of the chitosan matrix with ZnO nanoparticles. Microbiological tests show that chitosan coating is effective against Escherichia coli (E.
View Article and Find Full Text PDFIn this study, powder metallurgy was used to fabricate titanium nitride/nickel metal-matrix composites. First, titanium and nickel powders with weight ratios of 20:80, 50:50 and 80:20 were dry mixed for 24 h. After cold isostatic pressing, the green compacts were soaked in a water-based hot forging lubricant and sintered at 850, 950 and 1050 °C for 1.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2020
Photoluminescent nanomaterials have immense potential for use in biological systems due to their excellent fluorescent properties and small size. Traditional semiconductor quantum dots are heavy-metal-based and can be highly toxic to living organisms, besides their poor photostability and low biocompatibility. Nano-sized carbon quantum dots and their surface-modified counterparts have shown improved characteristics for imaging purposes.
View Article and Find Full Text PDFThis study provided an eco-friendly manufacturing method for Ti implants by combining machining and surface treatment processes. Ti was machined by electrical discharge machining (EDM) in a water-based dielectric in order to reduce environmental impact and improve operational health. The feasibility of this eco-friendly EDM was evaluated by tested the bioactivity and cytocompatibility of the EDM-treated Ti and the commercially micro-arc oxidation (MAO)-treated Ti was used as a control group.
View Article and Find Full Text PDFPurpose: This study developed calcium phosphate bone substitutes and their microstucture and in vitro cell response were evaluated in comparison with commercial hydroxyapatite (HA).
Materials: HA powder was ball-milled and then sintered to transfer into the calcium phosphate bulks (CPB). The density, hardness, and microstructure of the CPB were investigated.