Publications by authors named "Seung Jung Han"

Background/objectives: Circulating tumor DNA (ctDNA) has emerged as a promising biomarker for non-invasive tumor monitoring in diffuse large B-cell lymphoma (DLBCL).

Methods: In this study, 52 patients with newly diagnosed advanced-stage DLBCL treated with R-CHOP underwent serial ctDNA analysis at baseline, interim (after three cycles), and end of treatment. The prognostic significance of ctDNA dynamics was evaluated, and its predictive value was compared with the PET/CT response.

View Article and Find Full Text PDF

Background: Circulating tumor DNA (ctDNA) is a potential biomarker in pancreatic ductal adenocarcinoma (PDAC). However, studies on residual ctDNA in patients post-chemotherapy are limited. We assessed the prognostic value of residual ctDNA in metastatic PDAC relative to that of carbohydrate antigen 19-9 (CA19-9).

View Article and Find Full Text PDF

Background: Cancer recurrence remains a significant problem, and most postoperative recurrences of non-small cell lung cancer (NSCLC) develop within 5 years after resection. We present a rare case of ultra-late recurrence of NSCLC accompanying choroidal metastasis with fusion 14 years after the definitive surgery.

Case Description: A 48-year-old female patient who had never-smoked presented with decreased visual acuity.

View Article and Find Full Text PDF

Study Design: This is a prospective, stratified randomized, multicenter, 4-year follow-up study.

Objective: The authors aimed to evaluate the long-term clinical efficacy and safety of CaO-SiO2-P2O5-B2O3 glass ceramics (BGS-7) spacers in 1-level posterior lumbar interbody fusion (PLIF) at a 4-year follow-up.

Summary Of Background Data: According to 1-year follow-up results, BGS-7 spacer showed similar fusion rates and clinical outcomes compared with titanium cage.

View Article and Find Full Text PDF

In a previous study, we have identified MTBK_24820, the complete protein form of PPE39 in the hypervirulent (Mtb) strain Beijing/K by using comparative genomic analysis. PPE39 exhibited vaccine potential against Mtb challenge in a murine model. Thus, in this present study, we characterize PPE39-induced immunological features by investigating the interaction of PPE39 with dendritic cells (DCs).

View Article and Find Full Text PDF

Objectives: Inferior alveolar nerve block (IANB) is the most frequently used treatment for mandibular molars. Successful IANB requires insertion of the dental needle near the mandibular foramen. In this study, we aimed to analyze the anatomic location of the mandibular lingula and evaluate the effects of internal oblique ridge (IOR)-guided IANB.

View Article and Find Full Text PDF

Calmette-Guerin vaccine confers insufficient pulmonary protection against tuberculosis (TB), particularly the (Mtb) Beijing strain infection. Identification of vaccine antigens (Ags) by considering Mtb genetic diversity is crucial for the development of improved TB vaccine. MTBK_20640, a new Beijing genotype-specific proline-glutamic acid-family Ag, was identified by comparative genomic analysis.

View Article and Find Full Text PDF

The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets.

View Article and Find Full Text PDF

Accumulating evidence indicates that latency-associated Mycobacterium tuberculosis (Mtb)-specific antigens from the dormancy survival regulator regulon (DosR) may be promising novel vaccine target antigens for the development of an improved tuberculosis vaccine. After transcriptional profiling of DosR-related genes in the hyper-virulent Beijing Mtb strain K and the reference Mtb strain H37Rv, we selected Rv3131, a hypothetical nitroreductase, as a vaccine antigen and evaluated its vaccine efficacy against Mtb K. Mtb K exhibited stable and constitutive up-regulation of rv3131 relative to Mtb H37Rv under three different growth conditions (at least 2-fold induction) including exponential growth in normal culture conditions, hypoxia, and inside macrophages.

View Article and Find Full Text PDF

Identification of vaccine target antigens (Ags) that induce Ag-specific Th1 immunity is the first step toward the development of a tuberculosis vaccine. Here, we evaluated the Mycobacterium tuberculosis (Mtb) protein Rv3628, a soluble inorganic pyrophosphatase, as a vaccine target and characterized the molecular details of its interaction with dendritic cells (DCs). Rv3628 activated DCs, increasing their expression of cell surface molecules and augmenting their production of TNF-α, IL-1β, IL-6, and IL-12p70.

View Article and Find Full Text PDF

The majority of tuberculosis (TB) vaccine candidates advanced to clinical trials have been evaluated preclinically using laboratory-adapted strains. However, it has been proposed that challenge with clinical isolates in preclinical vaccine testing could provide further and more practical validation. Here, we tested the ID93/GLA-SE TB vaccine candidate against the clinical Mycobacterium tuberculosis (Mtb) strain K (Mtb K) belonging to the Beijing family, the most prevalent Mtb strain in South Korea.

View Article and Find Full Text PDF

Recent studies have demonstrated the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of acute inflammatory injury and bacterial pneumonia, but their therapeutic applications in mycobacterial infections have not been investigated. In this study, we demonstrated the use of MSCs as a novel therapeutic strategy against Mycobacterium abscessus (M. abscessus), which is the most drug-resistant and difficult-to-treat mycobacterial pathogen.

View Article and Find Full Text PDF

Here, we describe the draft genome sequence of Mycobacterium tuberculosis KT-0184, from the Beijing family. This genome will provide insight into the evolution and adaptation of M. tuberculosis KT-0184 in human hosts.

View Article and Find Full Text PDF
Article Synopsis
  • The draft genome sequence of Mycobacterium tuberculosis KT-0133 is now available for study.
  • This strain is part of the Korean-Beijing family, which has specific characteristics related to its evolution.
  • The information gained from this sequence will help us understand how this bacterium adapts and survives in human hosts.
View Article and Find Full Text PDF

The aim of this study was to genetically characterize clinical isolates from patients diagnosed with Mycobacterium avium lung disease and to investigate the clinical significance. Multi-locus sequencing analysis (MLSA) and pattern of insertion sequence analysis of M. avium isolates from 92 Korean patients revealed that all isolates were M.

View Article and Find Full Text PDF
Article Synopsis
  • The text presents the draft genome sequence of Mycobacterium tuberculosis KT-0204, which belongs to the non-Beijing family.
  • This genomic sequence is expected to provide insights into the genes that contribute to the evolution of this strain.
  • Understanding these genes can help reveal how M. tuberculosis KT-0204 adapts to human hosts.
View Article and Find Full Text PDF

We report the draft genome sequence of totally drug-resistant (XDR) Mycobacterium tuberculosis KT-0192. This sequence will provide new insights into the main cause and evolution of drug resistance in M. tuberculosis KT-0192.

View Article and Find Full Text PDF

A better understanding of the kinetics of accumulated immune cells that are involved in pathophysiology during Mycobacterium tuberculosis (Mtb) infection may help to facilitate the development of vaccines and immunological interventions. However, the kinetics of innate and adaptive cells that are associated with pathogenesis during Mtb infection and their relationship to Mtb virulence are not clearly understood. In this study, we used a mouse model to compare the bacterial burden, inflammation and kinetics of immune cells during aerogenic infection in the lung between laboratory-adapted strains (Mtb H37Rv and H37Ra) and Mtb K strain, a hyper-virulent W-Beijing lineage strain.

View Article and Find Full Text PDF

A gradual understanding of the proline-glutamate (PE) and proline-proline-glutamate (PPE) families, which compromise 10% of the coding regions in the Mycobacterium tuberculosis (Mtb) genome, has uncovered unique roles in host-pathogen interactions. However, the immunological function of PE27 (Rv2769c), the largest PE member, remains unclear. Here, we explored the functional roles and related signaling mechanisms of PE27 in the interaction with dendritic cells (DCs) to shape the T cell response.

View Article and Find Full Text PDF

Mycobacterium bovis bacillus Calmette-Guerin (BCG), the only licensed vaccine, shows limited protection efficacy against pulmonary tuberculosis (TB), particularly hypervirulent Mycobacterium tuberculosis (Mtb) strains, suggesting that a logistical and practical vaccination strategy is urgently required. Boosting the BCG-induced immunity may offer a potentially advantageous strategy for advancing TB vaccine development, instead of replacing BCG completely. Despite the improved protection of the airway immunization by using live BCG, the use of live BCG as an airway boosting agent may evoke safety concerns.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is an outstanding pathogen that modulates the host immune response. This inconvenient truth drives the continual identification of antigens that generate protective immunity, including Th1-type T cell immunity. Here, the contribution of methylmalonate semialdehyde dehydrogenase (MmsA, Rv0753c) of Mtb to immune responses was examined in the context of dendritic cell (DC) activation and T cell immunity both in vitro and in vivo.

View Article and Find Full Text PDF

Mycobacterium tuberculosis K, a member of the Beijing family, was first identified in 1999 as the most prevalent genotype in South Korea among clinical isolates of M. tuberculosis from high school outbreaks. M.

View Article and Find Full Text PDF

Background: Mycobacterium intracellulare is a major cause of Mycobacterium avium complex lung disease in many countries. Molecular studies have revealed several new Mycobacteria species that are closely related to M. intracellulare.

View Article and Find Full Text PDF

Although Mycobacterium abscessus (M. abscessus) is becoming more prevalent in patients without overt immunodeficiency, little is known about the factors that contribute to disease susceptibility. This study was undertaken to investigate how Toll-like receptor 2 (TLR2) functionally contributes to the generation of protective immunity against M.

View Article and Find Full Text PDF

Cl-amidine, which is a small-molecule inhibitor of PAD, has therapeutic potential for inflammation-mediated diseases. However, little is known regarding the manner by which PAD inhibition by Cl-amidine regulates inflammatory conditions. Here, we investigated the effects of PAD inhibition by Cl-amidine on the functioning of DCs, which are pivotal immune cells that mediate inflammatory diseases.

View Article and Find Full Text PDF