Background: Spermatogenesis is a tightly organized process that utilizes an intrinsic genetic program composed of germ cell-specific genes. Although mouse germ cell-related cell lines are available, few germ cell-specific genes have been comprehensively identified in such cell lines.
Objective: We aimed to profile gene expression in the male mouse germ cell-related cell lines, GC-1 and GC-2, characterize their transcriptomic nature, and identify potential testis- or germ cell-specific or -predominant genes expressed in these cell lines.
Graphitic carbon-coated ZnPS is prepared via direct phosphosulfurization and high energy mechanical milling (HEMM) with multiwall carbon nanotubes (MWCNTs) and first introduced as an anode for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The HEMM process with MWCNTs reduces the particle size of as-synthesized ZnPS bulk to 100-500 nm and yields the ≈5 nm thick graphitic carbon coated ZnPS nanoparticles, which are the nanocomposites of 5 nm sized nanocrystallites embedded in the amorphous matrix. The ZnPS electrode undergoes the combined conversion and alloying reactions with Li and Na ions and exhibits high initial discharge and charge capacities in both LIBs and SIBs.
View Article and Find Full Text PDFThe electrocatalytic water splitting activity of V-based oxides has been rarely investigated, even though several polymorphs in VO are expected to exhibit different electrocatalytic activities depending on their crystal and electronic structures. The rutile structure of VO(R), showing metallic character, is a good candidate for a new electrocatalyst since it undergoes insulator-to-metal transition (IMT) from the insulating VO(M1) at a low temperature of 68 °C, and involves a substantially increased electrical conductivity by three orders of magnitude. The extensive improvements in the electrocatalytic activity for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) are confirmed when the IMT is induced where the overpotential () is reduced from 1056 mV to 598 mV in the OER and 411 mV to 136 mV in the HER, respectively.
View Article and Find Full Text PDFMale reproductive aging, or andropause, is associated with gradual age-related changes in testicular properties, sperm production, and erectile function. The testis, which is the primary male reproductive organ, produces sperm and androgens. To understand the transcriptional changes underlying male reproductive aging, we performed transcriptome analysis of aging testes in mice.
View Article and Find Full Text PDFHeat shock factor 2 (HSF2) regulates the transcription of the male-specific region of the mouse Y chromosome long arm (MSYq) multicopy genes only in testes, but the molecular mechanism underlying this tissue specificity remains largely unknown. Here, we report that the testicular germ cell-specific long noncoding RNA (lncRNA), , displays a characteristic spatiotemporal expression pattern in the nuclei of round and elongating spermatids. -knockout male mice produced sperm with abnormal head morphology and exhibited reduced fertility accompanied by a female-biased sex ratio in offspring.
View Article and Find Full Text PDFMammalian spermatogenesis is a highly organized process with successive mitotic, meiotic, and postmeiotic phases. This unique developmental process is characterized by the involvement of spermatogenic cell-specific genes. In this study, we identified and investigated testis expressed gene 13 (Tex13) family genes, consisting of Tex13a, Tex13b, Tex13c1, and Tex13d, in mice.
View Article and Find Full Text PDFThis paper presents a framework for automated optimization of double-heater convective PCR (DH-cPCR) devices by developing a computational fluid dynamics (CFD) simulation database and artificial neural network (ANN) model. The optimization parameter space that includes the capillary tube geometries and the heater sizes of DH-cPCR is established, and a database consisting of nearly 10,000 CFD simulations is constructed. The database is then used to train a two-stage ANN models that select practically relevant data for modeling and predict PCR device performance.
View Article and Find Full Text PDFReprod Biol
December 2020
The a disintegrin and metalloprotease (ADAM) family proteins comprise a group of membrane-anchored proteins. ADAM32 is expressed specifically in testis and is closely related phylogenetically to ADAM2 and ADAM3, which are known to be critical for fertilization in mice. To assess the biological role of ADAM32, we analyzed Adam32-mutant mice.
View Article and Find Full Text PDFA MnV2O6/graphene nanocomposite was fabricated through hydrothermal synthesis and high energy milling to introduce it as an efficient OER electrocatalyst. The MnV2O6/graphene nanocomposite with 20 wt% graphene exhibited superior electrocatalytic OER performance with a low overpotential and high stability and durability in 1 M KOH aqueous solution, exhibiting even after 1000 CV cycles.
View Article and Find Full Text PDFThis paper presents a surrogate-based optimization (SBO) method with adaptive sampling for designing microfluidic concentration gradient generators (μCGGs) to meet prescribed concentration gradients (CGs). An efficient physics-based component model (PBCM) is used to generate data for Kriging-based surrogate model construction. In a comparative analysis, various combinations of regression and correlation models in Kriging, and different adaptive sampling (infill) techniques are inspected to enhance model accuracy and optimization efficiency.
View Article and Find Full Text PDFMaterials (Basel)
November 2019
SnSe is considered as a promising thermoelectric (TE) material since the discovery of the record figure of merit (ZT) of 2.6 at 926 K in single crystal SnSe. It is, however, difficult to use single crystal SnSe for practical applications due to the poor mechanical properties and the difficulty and cost of fabricating a single crystal.
View Article and Find Full Text PDFChem Commun (Camb)
September 2019
In mammals, the early embryo travels down the oviduct to the uterus and prepares for implantation. The unique features of preimplantation development include compaction followed by blastocyst formation. This first cell lineage specification involves various proteins including cell polarity regulators, kinases, and transcription factors.
View Article and Find Full Text PDFThe substitutional solid solution Mn1-xFexP compounds between alloying reaction-type MnP and conversion reaction-type FeP are successfully synthesized via facile high energy mechanical milling and their electrochemical properties as an anode for lithium ion batteries (LIBs) are investigated. A complete solid solution is formed between two end members and the Mn1-xFexP solid solution phosphide electrodes show an enhanced electrochemical performance, delivering a capacity of 360 mA h g-1 after 100 cycles at a high current density of 2 A g-1 when the advantages of the two reaction mechanisms are beneficially combined. These synergistic effects resulted from the in situ generated nanocomposite of the Li-Mn-P alloying element and the Fe nano-network in combination with the surrounding amorphous lithium phosphide, which effectively buffers the accompanying volume variation, hinders the aggregation of the alloying element, and ensures the electron and ion transport.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2019
Silicon (Si) is considered to be one of the most promising anode candidates for next-generation lithium-ion batteries because of its high theoretical specific capacity and low discharge potential. However, its poor cyclability, caused by tremendous volume change during cycling, prevents commercial use of the Si anode. Herein, we demonstrate a high-performance Si anode produced via covalent bond formation between a commercially available Si nanopowder and a linear polymeric binder through an esterification reaction.
View Article and Find Full Text PDFCopper deposited mesoporous silicon was fabricated by magnesiothermic reduction and electroless deposition and its electrochemical properties as an anode for lithium ion batteries were investigated. The 300-400 nm sized mesoporous Si particles were synthesized by magnesiothermic reduction of SiO nanospheres prepared by the Stöber method. The mesopores of Si particles were effectively decorated with Cu using Sn sensitization/Pd activation and subsequent Cu electroless deposition.
View Article and Find Full Text PDFLayered lithium transition-metal oxide materials, e.g., Li(Ni Co Mn )O (NCM) and Li(Ni Co Al )O, are the most promising candidates for lithium-ion battery cathodes.
View Article and Find Full Text PDFNi-rich layered LiNi Co Mn O systems are the most promising cathode materials for high energy density Li-ion batteries (LIBs). However, Ni-rich cathode materials inevitably suffer from rapid capacity fading and poor rate capability owing to structural instability and unstable surface side reactions. Zr doping has proven to be an effective method to enhance the cycle and rate performances by stabilizing the structure and increasing the Li diffusion rate.
View Article and Find Full Text PDFV4P7 nanoparticles were synthesized via high-energy mechanical milling and their electrochemical properties as an anode for sodium-ion batteries were studied and compared with those of VO2(B)/Na and V4P7/Li cells, focusing on the electrochemical reaction mechanism and cycle performance. The V4P7 showed excellent cycling behavior even without any conductive material.
View Article and Find Full Text PDFEpididymal maturation is critical for acquisition of motility and fertilizing capacity by sperm. During epididymal transit, the surface of sperm undergoes prominent sequential changes through interactions with secreted proteins, including protease inhibitors. In the present study, we characterized three epididymis-specific SPINKs (serine protease inhibitors, Kazal-type): SPINK8, SPINK11, and SPINK12.
View Article and Find Full Text PDFPrecise control of the oxidation state of transition-metal oxides, such as copper, is important for high selectivity of CO reduction in an aqueous condition to compete with the reduction of water. The phase of copper oxide nanofibers was controlled by predictive synthesis, which controls the nanoscale gas-solid reaction by considering thermodynamics and kinetics. The driving force of the phase transformation between the different oxidation states of copper oxide is calculated by comparing the Gibbs free energy of each of the oxidation states.
View Article and Find Full Text PDFSpermatogenesis is a tightly regulated process involving germ cell-specific and germ cell-predominant genes. Here we investigate a novel germ cell-specific gene, Spatc1l (spermatogenesis and centriole associated 1 like). Expression analyses show that SPATC1L is expressed in mouse and human testes.
View Article and Find Full Text PDFBackground: Spermatogenesis, which is the complex and highly regulated process of producing haploid spermatozoa, involves testis-specific transcripts. Recent studies have discovered that long noncoding RNAs (lncRNAs) are novel regulatory molecules that play important roles in various biological processes. However, there has been no report on the comprehensive identification of testis-specific lncRNAs in mice.
View Article and Find Full Text PDFMaterials (Basel)
April 2018
This study evaluated the sealing ability of gutta-percha (GP) with a calcium silicate-based sealer and a novel calcium zirconate containing calcium silicate cement (ZC). The root canals of the extracted premolars were prepared, which were then randomly allocated to three experimental groups (12 root canals per group) for obturation by continuous wave of condensation with the GP and AH 26 sealer (CW); obturation using a single GP with a calcium silicate-based EndoSequence BC sealer (SC); or obturation with ZC. The roots were inserted into sterile Eppendorf tubes, which were inoculated coronally with .
View Article and Find Full Text PDF